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ABSTRACT 

The stochastic process of precipitation intensity, ~t ~ 0 , as a time series at a given 

precipitation station, is presented. Six random variables are used as descriptors of the 

st -process: (1) the number of storms in a time interval; (2) lthe maximum number of storms 

after a reference time, with their total precipitation not exceeding a given value ; (3) 

the lapse time between a r eference t i me and the end of a storm; (4) the total precipitation 

for v storms; (5) the total precipitation of the v-th storm; and (6) the total pr ecipitat i on 

in a given interval of time. 

Two parameter s are shown to be i mportant in deriving t he probabi l ity distributions of t he 

above six descriptors : /-1' the average number of storms per uni ·t t i me interval (in the text 

designated as the density of storms in time); and 1- 2, the yield characteristic of storms (in the 

text defined as the inverse of the average water yield per storm) . >- 1 and 1-2 are periodic 

functions of time, with the year as the period, as illustrated with four examples (Durango, 

Colorado ; For t Collins , Colorado ; Austin, Texas and Ames, Iowa precipitation time series , 

the first t hree using daily precipitation v~lues and the last one hourly values) . 

Two definitions of storms have been i mposed by the data available: (1) every rainy day or 

every rainy hour is considered as a storm; and (2) the uninterrupted sequence of rainy days or 

rainy hours is considered as a storm. In studying 1- 1- and 1-2-parameters, it was shown for 

rainy days that the first defi nition gives a larger number and the second definition a smaller 

number of storms per time interval than t he expected true number of storms . 

The number of storms in an interval is Poisson-distributed, with the parameter in that 

distribution being the integral of >-1-parameter over that interval . 

The comparison of the t heoretical probabili ty density function for the total precipitation 

of v storms (v = 1, 2, 3 and 15 in the first definition and v = 1, 2, 3 and 10 in the second 

definition) and their empirical freq~ency density curves shows a good agreement for the four 

examples investigated, considering the inevitable sampling errors . 

The comparison of the theoretical probability distribution functions of the lapse time 

for v- th storm (v = 1, 2, 3 and 15 in the first definition, and v = 1, 2, 3 and 10 in the second 

defi nition of storms) and their empirical frequency distributi on curves show a good agreement 

for t he four examples investigat ed. 

vii 



STOCHASTIC PROCESS OF PRECIPITATION 

by 

P. Todorovic* and V. Yevjevich** 

Chapter I 

INTRODUCTION 

1.1 General character of hydrologic time series. 
The analysis of hydrologic time series and other hydro­
logic s equences by the appropriat e mathemati cal models , 
that describe either the patterns in sequence of a river 
fl ow or precipitation or their spacial distributions, 
r epresent an important step in predicting charact er is­
tics of future water supply and planning of water 
resource projects . Among the various concepts that 
have been used in the analysis of hydro-logi c processes 
one can distinguish two basically different approaches, 
deterministic and probabilistic. In the following, two 
examples ar e outlined that point out the distinction 
between these two conceptual approaches. 

A hydrologic (or generally speaking, a physical) 
phenomenon is subject to some laws that govern its 
evolution. A physical phenomenon is assumed to be a 
deterministic one i f, on the basis of the present state, 
the future characteristics of the phenomenon can be pre­
dicted with certainty (are sure outcomes). For instance, 
the Newton laws of motions are deterministic in the 
sense that on the basis of the given present state of a 
moving body the future states are uni quely determined. 
Similarly, as an example in hydrology, the outflow 
hydrograph from an impervious surface is a determinis­
tic process, if the rainfall input is assumed to be 
known as its distribution over the surface and in a 
given time interval, and the evaporation is negligible . 

The laws of random phenomena, for example, those 
that govern the evolution of rainfall phenomenon in 
time , are stochastic in the sense that on the basis of 
the present state only probabilities of the future out­
comes may be determined. For the precipitation random 
process, i f nt stands for the number of bursts or 

storms in the interval of time (o,t), which gives the 
present state of the phenomenon, ·the number of bursts 
or storms n •t in the int erval of time (t,t+t::.t), t,t+ ... 
can never be predicted with certainty for any t::.t > 0 . 
In other words, nt,t+t::.t is a random variable defined 

over some probability space (fl ,d,P) for every t::.t > 0. 
Si nce n , is a discrete random variable, only t,t+ut 
probabilities 

v}, v 0, 1, 2, .. . ' 

where E PJt.~t) 
v=o 

1 for all t > o and t::.t > o, may 

be determined. 

This study of prec1p1tation phenomenon follows in 
principle the probabilistic approach. \'lith respect to 
the nature of the phenomenon, this approach is the 
most logical for the analysi s and prediction of the 
future characteristics of the time series of precipi­
tation . To summarize, the precipitation phenomenon is 
considered from the aspect of the theory of stochastic 
processes. A stochastic process is a mathematical 
abstraction of an empirical process, which in this case 
is a physical phenomenon evolving in time and governed 
by probabilistic laws. A stochastic process is a random 
variable Xt, that depends on time t, or a family of 

random variables, one for each instant of time, t, 
defined on a probability space. 

1 . 2 Structure of hydrologic time series. Past 
experience with various studies of time series of 
hydrologic phenomena, such as evaporat ion , r unoff, 
precipitation, and others has pointed to their three 
basic characteristics expressed in the form of time 
seri es component s : 

(a) The secular or long term variations conceived 
as fluctuations of the basic characteristics of time 
series (distribution function, mathematical expectation, 
variance, extreme values, etc.) in function of time, 
either as the regular persistence of cycli ci ty and 
trends, or as unspecified changes of non-stationary 
character. These variations are often referred to as 
"climatic changes" or "secular components of geophysi cal 
time processes ." 

(b) The periodic component related to the 
astronomical cycle of the day, or the periodic com­
ponent related to astronomical cycle of the year, are 
usually defined as "periodic movements. " 

(c) The stochastic components that are the 
results of the probabilistic nature of the phenomena 
considered are frequently called "stochas tic variations 
or fluctuati ons." 

•Associate Professor, Civil Engineering Department, Colorado State University, Fort Collins, Colorado. 
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Among the most controversial questions i n t he 
current hydrologic investigations is t he problem of the 
existence of secular components , that is t he exist ence 
of periodicity, trends or other non- stationarity i n the 
probability structure of hydrologic t ime series of 
annual values, beyond the periodicity of the year. 
Non-stationarity in secular components may be only i n 
some characteristic parameters of the series, such as 
the t rend i n the mat hematical expectation, in t he 
variance , covariance, or i n the higher moments . In 
other words , there is t he question whether or not the 
"secular components" or "secular non-stationarity" do 
really exist in time series. 

Some studies do not support the concept of non­
stationarity in hydrologic series of annual values . 
At least the most reliable information available in 
the last 100-150 years of thousands of annual precipi­
tation and annual runoff series ( 1] does not show sig­
nificant trends and periodicities. However, this 
subject i s still not closed and will likely be treated 
often in the future as more data become available and 
as better methods for the discrimination and testing 
of various properties of time series are developed. 
This problem of eventual long-term non-st ationarity 
of time series is not treated in this study. It is 
assumed the present-day techniques of time series 
analysis do not, and eventually cannot, discern any 
significant non-stationarity in the series of annual 
val ues of basic hydrol ogi c phenomena. I n other words, 
for a couple of centuries (1-2 preceding and 1-2 next 
centuries), i t is assumed for the purposes of t his 
study that no secular component of non-stationary char­
acter is present in the series of annual val ues of natu­
ral hydrologic processes. 

The time series of variables which refer to any 
interval, smal ler than a year (seasonal, monthly, daily , 
hourl y, and so forth) and the continuous time series of 
intensity of a hydrologic phenomenon exhibit both 
periodic components and stochastic components . There­
fore, they are basically non- stationary time series. 

With respect to the within-the-year periodicity, 
it seems logical to conclude, by physical considerations 
and as well as by experience , that some hydrologic time 
series must have the per i odical -probability s tructure. 
At least they have periodicity in some parameters . The 
probabilistic nature of hydrologic time series is a 
result of mutual interactions of an i mmense number of 
various physical causat ive factors. In spite of very 
regular and deterministic astronomical movements , many 
hydrologic time series are extremel y irregular and 
their behavior is unpredictable because of the dominance 
of probabilistic part in the phencmenon. 

1. 3 Subj ect of this investigation. The i nter­
mit t ent stochastic process of precipitation intensity 
;t ' which is the rainfall i ntensity at the instant t, 

is the subject matter of this i nvestigation. The total 
precipitati on in a small int erval of time (t,t+~t) is 
approximately equal to ~t · ;s , where t < s < t + ~t. 

Therefore , the total precipitation Xt in a time i nter­

val (o,t), if this limit exists, is given by 

X 
1t 

n 
lim l: E; ·~t. 
n...., i=l si 1 

t 

J E;s dt , 
0 

where for all i = 1, 2, .. . , n, and ~t . =! and 
1 n 

(1.1) 

(i-l)~t < si < i~t If Xt is a differential function 

of time t , then 

dXt 
E;t = dt (1. 2) 

where E; t represents a non-negative stochastic process 

or a non-negative f amily of random variables 

(1. 3) 

where T is the domain of definition of the process . 

On the basis of eq. (1 . :0, Xt represents a s t ochastic 

process as well. Both t t and Xt are continuous pa­

rameter random p rocesses and since ;t ~ 0 for all 

t ET, it follows that sample f unctions of Xt are non­

decreasing f unctions of t . 

The process ;t is highly intermittent because f or 

any time interval (t 1, t 2)cT, t he probabilities that 

E;t = 0 and ;t > 0 are positive, i.e., 

Phenomenological l y speaking, {;t = 0 , t E(t1 , t 2)} 

represents t he event that ~t = 0 in (t1,t2). In other 

words there will be no precipitation during the time 
i nterval (t 1, t 2) . The condition P{E;t = 0 , tE (t1, t 2)}+0 

if (t2 - t
1

) ... oo means that the probability of the 

event, that after time t
1 

it will never rain again, 
is zero . Similarly , {tt > 0, t E(t1 ,t2)} denotes the 

event that during (t1,t2) it continuously rains. The 

condition P{E;t > 0, tE(t
1
,t2)}-> 0 if (t2 - t 1) -•"" 

means that t he probability is zero that after the time 
t

1 
it will rain continuously . 

The (instantaneous) precipitation 

rare l y measured or published as such. 
the ; t process. is given as integrated 

intensit y E; t is 

Instead, usually 
total precipi-

tation or as average intensities over unit time inter­
vals (10 minute~ 30 minutes, one hour , t wo hours , 
and so on) . Theref ore , in practice i nstead of a con­
tinuous r ecord of E;t only values in a finite set of 

time units are available. 

Those properties of intermittent prec1p1tation 
that are connected to the stochastic process t;t are 

subject of this study. In other words, var ious char­
acteristics of rainfall that can be obtained from the 
recorded precipitation data are expressed as functions 
of the process E;t . The areal distribution of precipi-

tation or any physical phenomenon in the atmosphere, 
which affects the precipitation, are not parts of this 
investigation . In t he sequel , the process E;t is re-

ferred to as the basic stochastic process of preci pi­
tation. 

1 . 4 Research objectives. The main objective of 
the study is to present a mathematical model for 

2 



investigating those properties of precipitation that 
are related to the stochastic process ~t' Such proper-

ties are the number of storms in a given interval of 
time, the total precipitation during the given number 
of storm periods, and similar . It is a result of the 
general characteristics of probability theory that these 
properties of rainfall may be derived from ~ -process. 

t 
In other words, and mathematically speaking, a series of 
functions of random variables, defined here as functions 
of Ct' are considered and their probability structures 

are determined as stochastic processes . Only one­
dimensional distribution functions of these functions 
of random variables are subject of this study. 

It should be stressed here that the study of the 
t 

process Xt = f ~s ds is undertaken and not of the 
0 

process Ct itself. The reason is it is much simpler 

to study the monotonically increasing p'l'ocess Xt than 
the basic process ct. 

1.5 Two fundamental approaches to investigation of 
hydrologic stochastic processes . The basic hydrologic 
processes in time domain contain daily and within-the 
year periodicities. Two fundamental approaches may be 
used in these cases: 

(a) A process is transformed in such a way as to 
remove the periodic components, and then to investigate 
the remaining stationary stochastic process. This 
approach is feasible for continuous processes or those 
derived processes of discrete nature which are not 
intermittent, say c t > 0. 

(b) A process is considered as observed, with its 
periodic part unseparated from the stochastic part, but 
many functions of the process {derived variables) ex­
hibit the periodicity. This second approach is attrac­
tive for intermittent processes, like storm precipita­
tion, or storm flows of intermittent rivers. In this 
second approach, the density of storms per unit time 
interval, or the intensity of storms (st orm yield) per 
unit time interval, will show a periodicity, if the 
density of storms and the water yield per storm arc 
functions of seasons . This second approach is the one 
taken in this study. 

3 



CHAPTER II 

THEORETICAL BACKGROUND 

2 .1 Definitions and notations. A.s was mentioned 
before , the prec~pitation intensity ; t ~ 0 is the basic 

process of the study. It is apparent that ~t 0, when­

ever there is no precipitation , and ~t > 0 when it rai ns 

or snows. If t
0 

stands for the time when observations 

of the rainfall phenomenon begin , and ;t is the rain-
o 

fal l intensity at that instarit, then with respect to 
the nature of precipitation, i t is not possi b l e to 
predict with certainty the value of ;t at any instant 

of time after t
0

; i.e., ~t is a random variable for any 

t > t
0

. For example, if an arbitrary sequence of times 

t 1 , t 2, . . . , tv are selected from (t0 ,~) , then it is not 

possible to anticipate precipitation intensities at 
these instants . In other words, 

~ ' ' , .. . ' ~ (2 . 1) 
tl t2 tv 

are random variables . Since it is valid for any se­
quence of instants from (t0 , ~) . it is apparent that ~t 

is an infinite family of random variables, or one varia­
ble for each t e (t

0
, "') , which is denoted in the follow-

ing manner 

This family of random variables represents the basic 
continuous parameter stochastic processes of t his study . 

Generally speaking, random variables of (2 . 1) have 
di fferent distribution functions, i .e., 

and 

F t (x) 
2 

f t (x) f. F (x) 'f , . .. 
1 t2 

P{tt < X } , .•• 

2 

The corresponding mathematical expectations 

J xdF (x) , 
t2 

(2. 3) 

arc di fferent for different ti (see Fi g . 1), as well . 

One can choose another sequence of instants ti, t2• · . . 

t ' and determine mathematical . expectations of .; , , 
n t

1 
st ' . .. ~t ' , etc. In this manner a curve is obtained, 

2 n 
(Fig. 1) , which represents mathematical expectations , 
E (l;t) of the stochasti c pr ocess f;t . In a simil ar \,•ay 

one can obtain the variance o2 of ' as a function of 
t t 

4 

(to,Ol t; t, t' z ~~ ~~ 

Fig . 1 Graphical presentation of mathematical expec­
tation of random variables , ~ 

tk 

time t defined as 

(2 . 4) 

If one ass.umes f;t to have t he periodic-probability 

structure, with both E(~t) and ot being periodic func­

tions of time t and 1vi th regard to the oscillation in­
side the day or inside the year, then E(~t) and crt 

fol lo1< the periodic movement of the day or the year, 
r espectively . 

In the moment theory of stochastic processes , lt 
is sometimes useful, instead of the process ~t' to con-

sider its linear transformation et' defined as 

£t (2. 5) 

In that case the process ~t is expressed as 

i . e . , the stochastic process ' tis separated in two 

components, the stochastic part, et, and the determin­

istic parts, c ( f;t) and crt. It is easy to see that 

for all t > t . 
- 0 

Since no assumptions have been made about the stochastic 
process ~t' nothing specific can be said about ct . It 

may be stationary in the wide or narrow sense , or it 
may be a stochastic process of any kind. 

The i nt ermittency of the precipitation intensity 
process enables the application of a particular con­
ceptual structure, namely precipitation bursts or storms 
as intermittent successive events i n the process. A 
storm i s defined as continuous precipitation between 



two non-rainy intervals, even though the t otal amount of 
precipitation and the duration of some storms may be 
very small . Therefore, there is a diffe r ence between 
the colloquial de finition and concept of a storm, and 
the definition of the storm in t he probabi listic sense 
of discret e precipitation storm event s . each has a 
different duration, a different total precipitation, 
and a different shape of storm intensities. This 
lat t er definition will be used in this text , 11rhile the 
everyday concept of storms 1dll be left for those storm 
events which have relativel y significant total preci pi­
tation. 

A schematic r epresentation of a sampl e function of 
the process { ~t; t ~ t

0
} is given in Fig . 2 . I t is easy 

to singl e out many characteristics of this process as 
sc:>parate stochast ic processes . For i nstance , the be­
ginning times , the centroids, the mid-points, or the 
ending time of i ndividual storm events are particular 
properties of the process . Similarly , the total pre­
ci pit ation of each event , the total precipitation from 
t

0 
to t, the duration of each event, the maximum inten-

sity of each event, etc. , are stochastic processes which 
depend on the basic process ~t · Choosing which of the 

various stochastic processes, derive<.! from t;t' to study 

will depend on the problem at hand . Theref ore , some 
arbi trary selection of random variabl es is made hero 
for the study of derived stochastic processes. For 
some other processes , not studied here, it i s l ogical 
to apply derivations simi l ar t o those shown in the 
following text. 

Fig. 2 Sampl e function of the process ' t , l<hich is a 
pr ecipitation hyetograph . 

The fi rst stochastic process derived from ~t is a 

1 i nea:r functional (or linear random funct ion) of l;;t, 
defined as 

X 
0 

+ 
t 

J 
t 

0 

{2 . 6) 

and repre-
X 

0 
is 

where s is a dummy integration vari able , 
sents the total precipitat ion for time t; 

t 
tota l preci pitat i on for time t and J 

o t o 
; s ds for time 

(t - t
0

) . Since ; t ~ 0 , i t follows that for all ~t > 0 

L+Lit 
f <;s ds > 0 
t 

(2. 7) 

5 

and thus , sample functions of stochastic process 
{Xt ; t > t

0
} are nondecreasing functions of t ime t 

(Fig. 3) . 

In further exposi t i on , the following system of 
stochastic processes, defined as functions of ~t ' wi ll 

be discussed or studied (see Fig . 3): 

(1) nt, the number of complete storm event s in the 

time interval (t
0
,t); 

(2) nx, t he maximum number of storm events after 

t
0

, with t he total precipitation which docs not exceed 

the quantity x - x
0

; 

(3) { '"' ; v = 1, 2, ... , } , the t i mes of ends of 

storm events , which is a random sequence of points on 
the time scale ; 

( 4) X \I ' the total precipitation for \1 storm 

events; 

(5) z\1 = x \1 - x v - 1 ' the total precipitation during 

v-th st orm event; and 

(6) {Xt; t > t o} ' t he total precipitati on in the 

interva l ( t
0

, tj f rom the initial absolute time t 
0 

to 

any time t, as a stepwise nondecreasing cumulative 
function of ~t· 

Befor e goi ng f urther, the discussion of some basic 
propert ies of stochastic processes from (1) to (6) is 
appropriate . Since t .and x are continuous var i a­
ble s , '\ and nx are continuous parallleter stochast:ic 

processos . However, for fixed t and x, random varia­
bl es , nt and nx ' aro of t he discrete type (count i ng 

variabl es) i.e ., nt and 'lx can be 0, 1, 2 , ... only. 

The stochastic processes \ ,, X"' and Z\' ar e the 

discrete paral!leter stochastic processes ; ho~;ever, for 
the fixed val Ufi' of the paramctel· v, the processes 
1 v , \ and ;:\! arc continuous random variables . By 

virtue of the defini t ion, for all 6t > 0 and 
6x > 0 , '\ ~ ''t+~t, and nx .:_ nx+t.x ; and Co r all 

v = 1 , 2 , .. . , and k = 1, 2 , .... . ) \ . ~ 'v+k and 

Xv ~ Xv+k . FinallY; for all v > u, Zv > OJ and 

X 
\ ' 

2 . 2 Some basi c considerations . In terms of proba­
bility t heory , a r andom experiment or a random observa­
t i on i s t~e system 

(2 . 8) 

"'here s: 
o- field 
and P 

is the space of elementary events w, J: is a 
or o-algebra 1o·hich consists of subsets of ~~ . 
i s probabi lity measure defined on the class .:t 

Phenomenologically speaking, an elementary event 
w represents an outcome of the experiment and r1 r ep­
resents the set of all possible outcomes of this experi ­
ment . TI1e class .11: is the set of all possi ble events 
that are sets of w and whose probability can be 



x,. 

I 
I 
I , z.= x.- x._, 
I 
I 

71' •( I ) 

___ J 

x. XI 

t'.,_, T'. 

Fig . 3 A sample function of the pr ocess {Xt; t > t 0 } 

determined . Finally, P is a function (so call ed 
probability measur~ which associates a definite proba­
bility to each event from Jt. 

In the case of precipitation, the intensity hyeto­
graph of the type given in Fig . 2 represents an outcome 
w of random observations, and n is the set of all 
possible hyetographs that may occur. Therefore, ll 
represents a functional space, whose elements arc func­
tions of time t. One may assume 0 as the set of all 
continuous functions defined on (t

0
,T), where T can 

be w Any function from n is called a sample func­
tion or a realization of the stochastic process, ~t · 

All possible measurable subsets of n(i .e . , abusing 
a bit of language, all events whose probability calcu­
lation has sense) make the a -field. System (Q,*,Pl is 
frequently called t he probability space. Examples of 
measurable subsets or events belonging to the a-field , 
assuming that n is the set of all sample functions 
of stochastic process ~t of precipitation intensity, 

are: (a) A subset of sample functions of ll which at 
a time t have t he Ctllnulati ve values Xt smal l er than 

a given x , where x > x
0

; (b) the complementary subset 

of all functions that have Xt :. x at a given t; (c) tre 

subset which satisfies the condition that tho total num­
ber of storm events , nt , in the interval (t

0
,t) is 

nt < v; (d) its complementary subset of nt :. v, and 

similar subsets . 

The points <. , j = l, 2, . . . , which define the 
J 

ends of storm events, may be replaced by the points of 
storm event beginnings, or storm events centroids , by 
their mid-points (SO~ of the total storm precipitation 
is before and SO% is after the mid-points) . The basic 
results will not be changed if one set or another set 
of <-points is selected for the definition of storm 
event positions in time . Theend effect in sample func­
tions is important in this case. The times t

0 
and t 

may divide s t orm events into two ' parts. For the inter­
val (t

0
, t], the end point 'v is then inside the interval 

(t
0
,t] , and t he end point Tv+l is outside this interval . 

It can be assumed t hese two end events may, on the 
average, compensate each other. Their parts inside the 
interval (t

0
,t] , immediately after t

0 
and immediate ly 

before t, should constitute one storm event in such a 
way that v end points T j , j • 1, 2 , ... , v , in the 
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interval (t
0

, t] are equivalent to v storm events . 

ln order to determine some probabilistic pr oper­
ties of the above six families of random variables 
der ived from l.; t, of interest in this investigation , t1;o 

classes of measurable subsets of n are first defined . 
In fact, the a-algebra ~ is generated by the sets of 
these families . 

t • t 
First, let c 0 denote the subset of the space 

J 

n which consists of all sample functions (all outcomes 
w, or all reali:ations) of the stochast ic process l.;t, 

which have exactly v points 1 . in (t , t J . 1n ot.her 
t

0
, t J o 

words, Ev represents the random event that exactl y 

v complete storms will occur in (t , t) . According to 
t he definition ° 

t 1 t 
E o 

\1 
{'f < t < T 

1
} , V • 0,1,2, ... ~ t > t 

v - v+ - o 
(2 . 9) 

It is not difficult to see that for a fixed 
t:. t

0 
the system of random events of(2.9)represents a 

countable partit ion of the space 0 , i.e., 

U 
t ,t 

E o 
v v•o 

t 1 t 
fl , E

1
° (l 

t ,t 
Ej 0 

.. e, i;. j "0,1,2, ... , 

(2 . 10) 

where 0 stands for an empty set ( the impossible even~. 
In other words, the union of all events of (2 .9) is a 
certain event, since in any time interval (t

0
,t] the 

number of storms must be 0, or l, or 2, ... , and any of 
these two events are disjoint events . However, it can 
be seen that in the general case 



t ' t 
E. o f'\ 

1 

t ,t+llt 
E. o -"6f 0 J r or any At > • 

X ,X 

Second, let G 
0 be the set (subset of O) of all v 

sampl e functions of the stochastic process ~t , so that 

the total amount of precipitation Xv during v storms 

is less or equal to (x- x
0
), and Xv+l exceeds (x - x

0
), 

i . e .' 

X , X 
G o 

\1 
{X ~X< X 1J, v - 0,1,2, .• . ; X~ x

0
• (2 .11) 

v v+ 

According to the definition, for all x ~ x
0

, the system 

of random events of~ .l~ has the following properties 

.. X ,X X ,X 
x,x .. n,G .o (\ G.o 

G 
0 

1 J v 
= 0, i,. j = 0,1,2, . . . ; u 

v=o 

X > X 
- 0 ) 

(2 . 12) 

i . e., the system of(2 .1 ~ repres ents a countabl e parti­
t ion of the space n. 

The reason the systems of (2 .9) and (2 . 11) of r~ 
events are sel ected is because the distribution and 
density functions of the above six stochastic processes, 
derived from I; , can be expressed in simple fo rms as 

t t 0 , t x0 ,x 
functions of probabilities of Ev and Gv On 

t ,t X ,X 

the other hand, probabilities P(E 0 
) and P(G 0 

v v 
can be determined easily for all v • 0,1, 2 , ... ,t ~ t

0 

and x ~ x
0

, under very general assumpt ions . 

Now , it is possible to define precisely the struc­
ture of t he probability space (O,i,P) . The definition 
of the space 0 is cl ear , as it is the set of all 
sampl e functions of ~t. The a-field (or a-al gebra) .:k 

is generated by the class of sets {Xv ~ x) and {tv ~ t) 

where v = 1,2, ... , x > x , t ~ t
0

• It is apparent for 
t t- 0 

v • 0,1,2, ... , f.vo ' t .:J;. Indeed, according to the 

definition 

t 't 
1:. 0 

v 
{T < t < T 

1
) 

v v+ 

Similarly, 

X ,x 
G o 

v 
{X < x < X 

1
} • {X < x} 0 { X 

1 
> x)t ~ . 

v - v+ v - v+ 

t 't 
Therefore , the classes of set s, E 0 

generat e the o-field Jf . v 

X ,X 

d G 0 
an v 

Final ly, two basic properties of probabil ity 
measure P are assumed to be 

lim 
llt-+o 

0 

llt 0 or lim 
llt -+o ll t 

(2 . 13) 
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and 

lim 
ax-.o 

= 0 

llx 0 or lim 
ax-.o llx 

(2 .14) 

for any value t and x, respectively. In other words, 

the sum of all probabilities , P(Et , t+llt) for v ~ 2 , is 
v 

a higher order infinitesimal quantity in comparison 

with lit , and similarly for t he sum of P(Gx,x+llx) for 
v 

v > 2 in comparison with llx , if llt and llx tend to 
zero. 

Assumption of (2 .13) means physically the pr oba­
bi l ities of two or more storms to occur in the infini­
t esimally small interval of t ime lit tend to zero much 
fas t er than lit . Similar physical i nterpretation is 
valid for the assumption of (2 .14) . 

In addition, the conditional frobabilities for 

h fE t,t+llt . EO't h l d "f t e occurrence o 1 , g1ven v , s ou sat1s y 

the following condition 
t 't 

P(Et , t+~t i E o ) 
A

1
(t,v) lim 1 llt v (2 . 15) 

llt -.o 

with A;(t,v) > 0 for all points te:(t
0

, .. ). To determine 

the probabilicy of a storm event just after t , in the 
interval (t,t+6t), the f unctionAl (t ,v) shoul d be inte-

grated in this f i nite small interval, or approxi mately 
it is A1(t,v)At . 

Similarly , t he conditi onal probabil ity for the 
X X+tJX XO,X 

occurrence of G1 ' , given Gv , should satisfy the 

following· condit ion 

A2 (x,v) = l im 
llx ... o 

A X , X 
P(Gx, x+ux

1 

G o ) 
1 v 

(2 .16) 

with A2(x , v) ~ 0 for all points of xt(x
0

,oo). The 

conditional probabil i t y of a storm of 4x-amount at x 
is for small Ax approximately equal to A2(x , v)t.x . 

In the following, it will be assumed the functions 
A1(t, v) and A2 (x,v) do not depend on v , i .e ., when 

Al (t , v) :: Al (t ) and A
2

(x,v) : A
2

(x). I t is easy to 

see A1(t) and A2(x) are constants if ~tis a stationary 

stochastic process. It is expected that A
1

(t) and 

A2 (x) are periodic functions for the studied ~t process , 

if this process contains the periodic components . 

2. 3 Distribution and density functions of derived 
stochastic processes . The one-dimensional distribution 
(and correspon.ding density) functions of the stochastic 
processes derived previously from ~ will be determined 
in this subchapter . t 



t 0 , t 
easily expressed in terms of probabilities of Ev -

and Gxo, x- events as follows: 
v 

By definition 

Denoting the mathematical expectation 

r 
v=1 

Similarly, for t he process ~x' 

and the mathematical expectation E(~x) is 

.. 
t 

v=1 

(2 .1 7) 

(2 .18) 

(2 . 19) 

(2. 20) 

For P{Tv ~ t } = Fv(t) and dFv(t)/dt = f v(t ) , the 

distribution and the density function of the variable 
Tv' it can be proven (see Appendix A) for every 

v .. 1, 2, ... 

and 

v- 1 
Fv (t) ,. 1- t 

j=o 

f (t) 
v 

(2.21) 

(2.22) 

provided the conditions of (2 . 13)and (2 .15) ar e sat isfied. 

For P{Xv ~ x) = Av(x) and av(x), the respect ive 

distribution and density functions of the variable 
Xv' it can be proven (see Appendix A) that for every 

v = 1, 2, ... 

and 

v-1 
t 

j=o 
(2 . 23) 

(2. 24) 

provided the condit i ons of (2 . 14) and (;2 .16) are satisfied. 

For P{Zv ~ t} • Bv(z) and bv(t) t he dist ribution 
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and density functions of the random variabl e Zv, it 

can be proven, keeping in mind Zv = Xv - Xv- l ' under 

the assumption z1, z2, . .. , Zv, ... are independent 

random variables , 

z 
a v( x0 +z) = f av-l[(x0 +z) (1- ~)] b v (u) du, 

0 
(2 .25) 

where u is the dummy integration var iable . Sol ution 
of this convolution integral equation gives the density 
function bv(z) of Zv . 

It is clear from eqs. (2 .17) through (2 . 25) that dis­
tributions and density functions of nt' nx' Tv' Xv and 

Zv may be obtained as soon as probabilit ies of the 
events 1/o•t and Gx0 ,x ar e known. 

v v 
t 't 

x 11 2 · 4 Determination of probabilit ies of E 0 
- and 

or- J 
G -events . The probabil ity t hat v st orm events 

will occur in the interval (t
0
,t+At), where At> 0, is 

v 

t 
r=o 

By using the condition o£(2 .13), then 

+ o(At) , 

where o(At) is the higher order infinitesimal in com­
parison with At , when At approaches zero . 

As 

13c,t+At • n _ U 
0 

t hen 

P(Eto , t+nt) - P (Et o , t) 
v v 

+ P(Eto , t n Et , t+At) + o (At) 
v- 1 1 

Taking into account the condition of(2 . 1S),one obtains 
the differential equations for the probability of events 

t
0
,t 

E 
v 

for v = 1, 2 , ... , and 

t 't 
3P(E0° ) 

at 
t , t 

• - A1(t ,O)P(E0° ) 

for v' • 0 . 

(2. 26) 

(2 . 27) 



Finally, by vi rtue of the relati on of (2 .15), i t follows 

where 

>. 
1 

( t ) 

oo t
0

, t 
r >.1 (t,v)P(Ev ) 

v=o 

lim 
llt·>O lit 

If >. 1 (t , v) is 

v=O,l~2 , 
0 • • ' 

an integrable funct ion for all 

and 

lim 
t-+t 

0 

t ' t 
P(E 0 

) 
v 

= {0

1 

for v > 0 

for v = 0 

t hen t he s olut ion of eq. (2 . 26) is equal to 

t , t t t 
P (~vo ) = exp{ - J >.1 (s,O)ds}· J >.1(t1,v-1) 

t t 
0 0 

(2 . 28) 

(2 . 29) 

(2 . 30) 

where ll>.
1

(s , v-1) = >. 1 (s ,v-i) - A1(s , v- i - l), and s , t 1 , 

t 2, . . . , \ are dummy integration variables. 

Some part icular cases of eq. (2 . 30) ar e considered 
here . 

l. 

>.
1

( t) . 

ll>-
1 

( t ) = 

~1 (t,v) is independent of v , or >. 1(t , v) = 
ln t hat case obviously ll>. 1(s , v-1) = 0 , or 

0 , so that 

t ,t 
P(Ev0 

) e 

t 
-Jt >.l (s) ds 

0 

t 

J v - 1 ' (t ) dt dt dt 
t "1 v v v-l · · · 1 · 

0 

It is easy to see eq. (2 . 31) may be r educed t o 

t t v -f >.1(s)ds (j >.1 (s)ds) 
t ' t t t 

P(Ev o ) 0 0 e v i 

(2 . 31) 

the fonn 

(2 . 32) 

2 . ~1 (t,v) = ~ (v) , or i ndependen t of t but 

dependent on v. Since the dif f er ence t~>. 1 (t, v-l) i s 

now equal t o ll>.1(t ,v-1) = t (v-1) - t (v-i -1) , assuming 

9 

t
0 

0, eq.(2. 30) becomes 

t ' t v-1 t 
ell~ (v)t1 

t 
P(E 0 

) e -z;;(v) tn ~;(i) f J l ellt; (v )t2 ... 
v 

i =o 0 0 

t ll l; (>.)t J v-1 e v dt dt v-1 · · · dtl (2 . 33) v 
0 

where ll i; (v) = ~ (v ) - t; (v-1) . If one assumes t; (0), 
t; ( l ) , repr esent an arithmetic progression, then 
llt; ( v ) = p = constant, and 

t ,t 
P(E 0 

) 
v 

v-1 
n t; ( i ) 

_J.::;..·=_,o~-- (ept _ 12v e-Hv)t , 
v !p" 

which finally gives 

(2 . 34) 

t ,t r[t; (o) + v] 
P(E 0 ) = e-r,;(o) t P ( 1 - e-pt)v . (2 . 35) 

v r (v+l ) 

3 . l 1 (t , v) = >.1 (t) · qv) . In thi s case the 

di f f erences of eq. (2 . 3~ become ll>.
1

(t, v-l) = >.
1

(t ) 

[~;(v-i) - t; (v-i-1)) . Assumi ng t
0 

= 0, and t; (o) , t; (1), 

... , r epresent t he ari t hmet i c progression with lll; (v) = 
p = constant f or al l v = 1 , 2 , . . . ,then 

t t 

o' o p o v 
t t - t; (o)J >. 1 (s)ds r [il£l + v]( -pf >.1 (s)ds) 

P(Ev ) = e · f (v+1) 1- e . 

(2. 36) 

In a simi lar way as f or P(Et 0 , t ), t he proper ties 
v 

X ,X 

of P(G 0 
) can be derived. 

v 
By using t he condition 

(2 .14) and (2 . 16), then 

for v = 1 , 2, ... , and 

X ,X 

aP (G 0 
) 

0 

ax 

f or v 0, which final ly gi ves 

P(G:
0

,x) = exp[-!:>.2 (s , v)ds] · ! :>.2 (x1, v-l) 

(2 . 37) 

(2. 38) 

exp [~xl ll>.2 (s , v)ds] · !x
1

>.2(x2, v-2) exp / :
2 

ll>.2(s,v-l)ds · 

0 0 0 



(2.39) 

where s, x1, x2, •.. , xv are dummy variables, and 

(2.40) 

For the assumption >.2(t ,v) : >.2(t), eq. ~-3~ gives 

[ t >.2cs)dsr 

P(G>,x) = exp [ - ( >.2(s)ds]- xo v i (2 .41) 

0 

2.5 Some basic properties of functions >. 1~ 
and >.2(~. The distribution functions of stochastic 

processes nt ' n , t , X and Z are related to proba­
x v \! t t" 'o' X ,X 

bil ities of ranaom events E and G 0 which in turn v \! 

are functions of >.
1
(t,v) and >.2(x ,v).respectively. 

These two functions represent the essence of the entire 

i.e., 

(2. 45) 

On the other hand, from the relation of (2 . 15) resul ts 

or 

P(E~,t+llt) • ; >.
1

(t,v)P(E>, t )llt + o(llt) . 
v•o 

Therefore, it follows 

lim 
lit~ 

lit 
(2.46) 

theory and as such deserve particular attention. and by virtue of(2.45) and (2.46) it turns out 

In the fol lowing it is assumed 

(2.42) 

Consider the functions fl
1
(t

0
,t) and A2( x

0
,x)" that 

represent mathematical expectations of random variables 
nt and nx' respectively . It is not difficult to prove 

(see Appendix A) that for any lit > 0 

(2. 43) 

Similarly, for any llx > 0 if follows 

(2. 44) 

On the basis of definition, 111 (t, t + lit) repre­

sents the average number of complete storm events in 
(t , t + lit). On the basis of the nature of the pre­
cipitation phenomenon, it looks realistic to assume 
A

1
(t, t + lit)~ 0 if lit~ 0. Since 

it follows that 11
1 
(t

0
,t) is a continuous function. Now 

consider the derivatives of expressions ~ . 26)and(2.27). 
If one multiplies the left and right side of eq . (2.26) 
by v and takes the sum from v = 1 to v = =, it turns 
out 

r v 
v=l 

t ,t 
a P (E 0 

) 

at 

10 

(2 .47) 

On the basis of eq. (2.32), the density function o£(2.22) 
becomes 

t 

-f>.1(s)ds 
t t 
o [j >.l(s)ds)v-1 

to 

where v • 1, 2 , ... 

Another useful interpretation of >.
1 

(t) is in 

sidering the expectation of nt' (using eq. (2.32] 

(2 . 48) 

con-

-/ >. 1 (s)ds[ j\1 (s)ds v 
00 t t 
r ve 0 ~0~-v7! ~~ 

v•l 

so the average number of storms in the interval (t
0
,q 

is equal to 

t 
E(nt) • >.

1 
(t

0
,t) • f >.

1 
(s)ds , 

t 
0 

in which >.
1
(t) represents a kind of density of storms 

in a unit of time. 



Because of daily and seasonal variations, it is 
realistic to expect that A1(t) is a per iodic time func-

tion, with a day or a year as periods, individual or 
superposed cycles. 

If the interval of time (t
0
,t] is sufficiently 

small or if the tt-process is stationary, so that the 

function A1 (t) is approximately equal to a constant A1 , 

and t
0 

may be taken as zero, then the number of storms 

nt is distributed according to Poisson distribution as 

v} 
t ,t 

P(E 0 
) 

v 

- A t 
e 1 

(A 
1 
t) v 

_v_l_ (2 . 49) 

Simi l arly, assuming A2(x
0

,x) is a differ ent i able func­
tion, and 

it follows that 

X , X 
P(G 0 

) v 

and 

e 

X 

-f A2 (s)ds 
X 

c e 0 

vi 
(2. SO) 

Using the substitution 

ds • du, 

the left side of the last equation becomes 

t +i t +1: 
-f Al (s)ds ~ 0 

Al (s)dj v 
t +'T t +1: 

0 0 e v! 

t t 
- -f A

1
(u+t)du [!o A1 cu+t)dur 

t 
e 0 

'V I 

or 

t t t t 
-J A1 (s)ds [!

0 

A1 (s)df -f A1(s+t)ds [!:1 (s+•)ds] v 
t t 

0 =e 0 e 
v i 'VI 

which is possible only if 

which proves that A1(t) is a periodic function (see 

Fig. 4). 

X 

J A2(s)ds . 

On the basis of eq. (2.5:1,), the average number of 
(Z.Sl ) storms needed ~o produce amounts of precipitation (x-x

0
) 

X 
0 

Therefore, by virtue of~.SO) the density function of 
~. 24) of X becomes 

v 
X 

-f A2 (s)ds 
X X 

0 [j (2 . 52) 

xo 

With respect to seasonal variations it is realistic 
to expect the function A1(t) is a peri odic function with 

a year as the period (See Fig. 4). In fact, this asser­
tion can be mathematically proved. Toward this end con­
sider stochastic processes ~t and nt t; since tt has 

o' 
the periodic probability structure it is obvious that 

(2. 53) 

where 1: is the period. For exampl e , t he probability 
that in November of one year the v s t orms will occur 
is equal to t he probability of the same number v of 
s t orms to occur in anyone of other years . Ther efore, 

i.e., 

t , t 
P(E 

0 
) 

v 

t +1:, t +t 
P (E 

0 
) 

v 

11 

is equal to f A2 (s)ds . Therefore, the function 
xo 

A2(x) is a characteristic of the amount of precipitation 

of one s t orm. It should be a constant or periodic 
function. 

I 
I 
I 

~~· I 
I 

Fig. 4 Graphical presentation of the function A1(t) 

For a small amount of precipitation (say x -x
0

) , 

or if the tt-process is stat ionary, A2 (x) is approxi­

mately equal to a constant A 2, and x
0 

may be taken as 

zero , so the probabi lity of , the number of s torms f or the 



gi ven amount of precipitation x, according to eq. (2.50), 
becomes a Poissonian distribution (x

0 
= 0) and 

X ,X 

P{nx = v} : P(Gv
0 

) --v (2 0 54) 

The mathematical expectation of the variable 'v 

can be obtained from eq. (2 . 48), or from i ts density 
function, as 

In a similar way 

The estimate of these integrals can be made under 
the assumption that both >-1(t) and x2(x) are bounded 

functions, wi th >-1 (t) > 0 and >-2(x) > 0 for al l t and 

x respectively. In other words, one can prove 

_v_ < E(t ) 
Xl - v 

v <-

~1 
_:::__ < E (X ) < _:::__ 
r2 - v - ~2 

(2 .55) 

where ~1 = inf >-
1

(t) is the lower bound of >-
1 

(t) for 

any t , X1 =sup >-
1
(t) , the upper bound of >-

1
(t ) ; and 

~2 =in£ A2(x), I 2 =sup >-2 (x). 

It can be shown that (see Appendix B) 

and 

\: v 

l: {E(t ) - E(' v-l)} < .E 
v=l v=l 

and assuming E(1:
0

) O,then 

v v x ~ E(t) ~ x 
-1 - 1 

In a similar way one can show 

.::::.._ < E (X ) < 
- - v 
"2 

where 

assuming ~ 2 > 0 . 

1 

~1 

(2 0 56) 

(2 0 57) 

(2 0 58) 

(2 0 59) 
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2.6. Some asymptotical distributions. In the 
previous sections the dens1ty functions fv(t) and 

av(x) of the random variables 'v 

theoretically derived for all v = 
shown that under the relations of 

and X have been 
v 

1, 2, . . . . I t was 
eqs. (2 . 13) and (2 . 14) 

t 

>-1 (t) f >-1(s)ds t 
fv (t) 

0 
cJ v-1 

="""RV)e >-
1 

(s)ds) 
0 

(2 0 60) 

X 

>.2(x) -f >- 2(s)ds 
x v-1 

av (x) 0 
(/ 1-2 (s) ds) = r (v) e 

0 

(2 .61) 

where v = 1, 2, 000 and r (v) ( v-1) I 

Now, an effort is made to investigate behavior 
of t he functions of (2. 60) and (2. 61) for large values of 
v . It will be proven that both of the density func­
tions tend to the Gaussian distribution if v ~ oo, if 
periodic functions A1(t) and A2(x) are bounded. In 

other words , i t 

), * 

can be shown· that for l arge v 

(t - v/Ap2 

2(v- l) ( " *) -
2 

e f (t)dt:; 1 

v >"2 11 (v-1) 
1 dt ; ~1 < "i < 

(x - v/>-2)2 

(2 0 62) 

~, 2 2Cv- l )C>-i) - 2 

av (x) dx ~ --_:;:::::;~;::;:-- e dx ; ~2 < Az < >- 2 l211(v-l) 

(2 0 63) 

Indeed, cons ider first the density f unction of 
(2 . 60); si nce. according to hypothesis, >.

1 
(t) is periodic 

and bounded, then for large t approximately 

t 
J >-1(s)ds: Ait. 
0 

(2 . 64) 

Therefore, on the basis of eq.(2 . 6~ and the Stirling's 
formula 

eq . (2 . 60) becomes 

>- i -(A*t-v+l) A t 
: ----;:::::;::::::;::;:- e 1 (-1-) v -l d t . 

l211(v-l) v- l 

By vi rtue of the substitution 

du 
u Ait - v+l; dt = >:* • 

1 
(2.65) 



Then 

f (t) d --;:::¢1:::;:;-:- e -u (1 + ~)v -l du v t - 1 v -1 hr. (v-1) 

If v is a very large nwnber it follows that 

u u u2 u2 
(v-1) ln(l + -)z (v -1) {- - }= u -

v -1 v-1 2 (v-l)2 2(v-l) 

or 

therefore, 
u2 

fv (t)dt : -;;:=:;1:::=;:;::- e- 2(v-l) du 
/211 (v -1 ) 

Finally, by virtue of eq . (2 .65) 

v-1 
(t - f*") 

1 

i.e., for very large v , fv(t) tends to the Gaussian 

distributi on with mean and var iance equal to 

v-1 
I* 

1 

respectively. 

and v-1 

<'·il2 
(2 .66) 

In a similar way one can conclude eq.(2.63)is 
correct as well. It is easy to prove that the result 
is not a trivial consequence of the central limit 
theorem, regardless of t he fact X is t he sum of ran-
dom variables, i.e ., v 

X 
v 

v 
l: 

k=l 
z 

v 

because none of t he conditions of the central l imit 
theorems are satisfied . 

2 . 7 The distribution of Xt. The random variable 

Xt was defined as the total amount of precipitation 

during the interval (t
0
,t]. To determine the distri­

bution of Xt, consider the event 

X > X 
- 0 

The corresponding probability P[Bt(x)] represents the 

one-dimensional distribution f unction Ft(x) of the 

stochastic process xt' i. e., 

On the basis of eq. (2.10l the event Bt(x) can 

also be written in the form 
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Bt(x) = u t ' t 
[E 

0 n v Bt (x)] J (2. 6 7) 
v=o 

which implies 

., t 't 
F t (x) = l: P[E 0 n Bt(x) ] J v v=o 

(2. 68) 

In Appendix C, it is shown the above equation 
can be reduced to: 

t , t X ,X 

l: P(E 0 0. G. 0 
) 

v=o j =v v J 
Ft(x) (2. 69) 

I f it is assumed that the interval (t ,t] is 
t , t 0 X ,X 

sufficiently small, then the events E o and G.0 

v J 
are indepenent . The probabilities of these events can 
be represented by the Poisson distribution (thereby 
assuming constant x1 and x2) . The distribution function 

of Xt can be written as: 

00 

Ft (x) l: 
v=o 

For x o, eq. (2. 70) reduces to 

The density function of the random variable Xt can 

be found by differentiation of Ft(x): 

f*(x) 
aFt (x) 

ax 

., 2(X x)j-l - ;>..t-A x oo (A
2
x)v-l (A

1
tf 

2 1 2 
I: (J. -1) ! ]=-A2e I: (v-1) l _ v_l_ 

j=v v=l 

- A t- .A X oo 
A 1 2 l: 2e (k+l )! k=o 

{A;t -A t-A X oo (2h.
1
x
2
tx) Zk+l 

A2/X:X e 1 2 I: 
2 k=-o 22k+l(k+l)lk! 

(2 . 71) 

Her e , 1
1 

(21A
1

X2tx) is the modified Bessel function 

of the first order. To facilitate determination of 



t .he value of the ·modified Bessel functions for large 
arguments from tables (British Association Mathematical 
Tabl es, 1958), eq. (2.70)can also be written as 

f~(x) 

( 2. 72) 

However, because of the discontinuity of the dis­
tribu tion function at x = o , for the density function 
as shown above 

- A t 
f f~ (x)dx 1 - e 

1 

6 

The densi'ty function therefore must be corrected, 
by using the Dirac 6 function and the knowledge that 

to read as follows 

-A t 
o(x)e 1 

+ f~(x) (2. 73) 

where 

o(x) = 0 for X ~ 0 

6 (x) = 00 for X • o, 

and 

+ <» 

I 6 (x) dx 1 . 

The mathematical expectation of Xt is equal to 

(2. 74) 

(See Appendix C). 

The variance is equal to 

(2 . 75) 
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Chapter III 

RESEARCH DATA ASSEMBLY FOR TESTING MODELS 

3 . 1 Objectives of data assembly for investigation 
of s t ochastic process of precipitation. The theoretical 
background, as given in the previous chapter, shows that 
some properties of feriodic-probabi l ity structure of 
stochastic process ~t} have been expressed in terms of 

two parameters which change along the year : A
1

, which 

is the density of number of storms in t ime , and x2, 

which is the yield characteristic of s torms, in time. 
Distributions of all random variables, which are given 
as functions of {~ t} and were studied in the previous 

chapter, are expressed in terms of either x
1 

or x
2 

or 
of both. 

To verify how well the theoretical distributions 
of random variables, which are functions of the {~t}-

process, fit distributi ons of observed samples of vari­
ous precipitation storm data, the research data are 
first assembled . Then, parameters x1 and x2 are esti-

mated as they change throughout the year. Finall y, 
empirical distributions are compared with theoretical 
probability distributions, the latter based on the com­
puted x1- and x2-parameters. The first objective of 

the r esearch data assembly and analysis is to show 
approximate variations of A1 and x2 through the year 

for some precipitation stations, and particularly 
whether they are or are not periodic in nature. Then, 
by using these values of x

1 
and x2, theoretical proba-

bility distributions of new variables are derived and 
compared with the corresponding distributions as ob­
tained from data. 

3.2 Selection of number of precipitation stations. 
Precipitation data are currently available in the form 
of discrete time series of hourl y, daily, or monthly 
values. Rarely are the continuous seri es of precipi­
tation intensities availabl e . The monthly-interval 
series is not relevant to the present study . Series of 
hourly precipitation contain numerous data. They are 
often cumbersome to handle, even by the computer tape 
input . The use of time series of daily pr eci pitation 
is imposed by the type of data availabl e. 

The approach in this study is t o show, by a few 
examples, how the theory may be applied to particular 
cases, rather than to use an exhaustive approach of 
applying the theory to hundreds of stations for obtain­
ing statistical characteristics of goodness of fit of 
theoretical probability distributions to empirical dis­
tributions. Therefore, only t hree pr ecipitation sta­
tions of daily data and a station of hourly data are 
chosen as the research material for objectives of this 
study. An exhaustive approach will be feasible once a 
methodology of application of the above theory is well 
designed and tested on a small number of r epr esentative 
examples. 

The three stations of dail y values are: 

(1} Durango, Colorado, for 71 years of observa­
tions, 1895 to 1965, on the western slopes of the Rocky 
Mountains , with an average annual preci pitation of P = 
19 . 02 inches; 

15 

(2} Fort Collins, Colorado, for 69 years of obser­
vations, 1898 to 1966, on the eastern slopes of the 
Rocky Mountains, with an average annual precipitation 
of P = 14 . 32 inches; and 

(3) Aust in , Texas, for 70 years of observations, 
1898 to 1967, which is influenced by the Gulf of Mexico 
air masses and clearly has two rainfall seasons, with 
an average annual precipitation of P = 33. 02 inches . 
The records of this station 35 years prior to 1898 have 
missing data, from time to time, and were not found 
feasible for computer oriented processing. 

Hourly values are assembled only for a station at 
Ames, Iowa, for a period of 18 years, January 1949 
through December 1966. The average annual precipita­
tion of this station for this period is P = 28 . 89 inches. 

3.3 Basic characteristics of daily and hourly 
precipitation series . In order to study basic proper­
ties of storms by daily or hourly precipitation data, 
a year is divided into 28 intervals, each 13 days long, 
for a total of 364 days. The 365th day is neglected, 
or in case the year has 366 days, the data of the two 
last days are neglected, whenever the properties of 13-
day intervals are studied. The only reason for selecting 
13-day intervals was the fact that 13 x 28 = 364 so that 
intervals are equal in size, as opposed to months which 
are of different size, and Lhat the residuals (loss of 
information) are only 1 or 2 days per year . Any other 
interval could be similarly used . It was also con­
sidered in this study that 28 values of 13-day inter­
vals will give a much better picture of how A 

1 
and x

2 
vary within the year. A much gr eater number would in­
crease the sampling variations in A1 and A2 while a 
smaller number of interval s may decrease t he informa­
tion about them. 

Basic characteristics of data are defined in this 
study as the means, standard deviations, and coeffi­
ients of variation of i ndividual 13-day intervals . If 
n = the number of years of data, then 

m 
T 

1 n 
= - I: 

n p=l 
X 
p,T (3 .1) 

are these means, with x the total precipitation of p,t 
an interval for a given year, with intervals r = 
1,2, . . . ,28 and years p = 1,2, ... ,n. Si milarly, the 
28 standard deviations are 

s 
T 

(3. 2) 

and the corresponding coefficients of variation are 

(3. 3) 

wi th s given by eq.(3.2)and m by eq . (3.0. If each 
T T 

value of eqs. (3 .1) and (3. 2) is divided by 13, then they 



give the densiti es of daily pr ecipi t ation characteris­
tics of means and s t andard deviations , over 13-day 
intervals. 

f or Ames (Iowa) . Left hand graphs in these figures 
show the computed densities of means and the fitted 
periodic components of significant harmonics in these 
densities . The averages of these graphs multiplied 

.F~gur~s 3.1 through 3. 3 give densities of daily 
~rec~p1tat1on characteristics r efer ring to 13-day 
1ntervals, for the means (in i nches per day), standard 
dev~ations (in inches per day) , and coefficients of 
varlation.for precipitation series of Durango (Coloradq, 
F~rt Coll1~s . (Colorad?) and Austin (Texas), r espec­
tlvely . S1m1l arly, Flg . 3.4 gives these densities 
(thi s time over hours) and coefficients of vari ation 

by 365 give the total average annual precipitation of 
each station. Central graphs show the computed den­
sities of s tandard deviations and either the fit ted 
periodic components of significant harmonics or the 
mean values of these densities of standard deviations. 
To obtain the standar d devi ation for a 13-day interval, 
the values of central graphs must be multiplied by 13 
for daily precipitation , or by 13 x 24 = 312 for hourly 
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Fig. 3.1 Densities of means and standard deviations, and the coefficien~s of variat ion of 28 int erval s of the 
year, each 13-days long, for daily precipitation series at Durango, Colorado (1895 - 1965, f or n = 71 
years): (1) comput ed densities of means , m,, in inches per day; (2) fitted periodic component to 

densities of means, ~ • • composed of significant harmonics; (3) computed densiti es of standard deviations, 

sT, in inches per day; (4) fitted periodic component to densit ies of standard deviations, cr t ' composed 

of only t he first siJnificant harmonic ; (5) comput ed coefficients of variat ion, , cv' and (6) f itted 

periodic component, a, , to coefficients of variation, composed of only the first significant harmonic . 

rOP.T-COLLI NS,COLOP.ADO rORT-COLLINS,COLOP.ADO fORT-COLLI NS, COLORADC 

'·' 
.Il l 

6 ..• 
.. . 

h 

:, .~~ 

' 3 
~ 1 • .t 

~ 1.2 

~~ ·'"' 
~ .~. 
t,; .15! 

5 
e '·' 
§ 
..... .. 
g .• 

.. 

.. 
I. ~ . 0 2 4 6 • •• 12 1& 16 •• 2G 22 a1 26 2t ):I 

"ffiiOOS I'UliOOS 

Fig. 3. 2 Densities of means and st andard deviati ons, and the coeffici ents of variation of 28 i nterval s of the 
year , each 13-days long , for daily precpipitation series at Fort Collins, Colorado, (1898 - 1966, or 
n ~ 69 years): (1) computed densities of means , m

1
, in inches per day; (2) fitted periodic component to 

densities of means, ~t ' composed of signi ficant harmonics ; (3) comput ed densities of standard devia­

tions, s,, in inches per day; (4) fitted periodic component to densities of standard deviations, cr
1

, 

composed of significant harmonics ; (5) computed coefficients of variation , , cv, and (6) fitted periodic 

component to coefficients of variation, e, , composed of only the fi rst significant harmonic . 
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Fig. 3. 3 Densities of means and standard deviations , and the coefficients of variation of 28 intervals of the 
year, each 13-days long, f or daily pr ecipitation series at Austin, Texas (1898- 1967, or 70 years) : 
(1) computed densit ies of means, m, , in i nches per day; (2) fitted periodic component to densities of 

means , lJ, , composed of signif icant harmonics; (3) computed densities of standard deviations , o,, in 

i nches per day; (4) the mean of 28 values of computed s, , with no harmonic being significant; (5) 

computed coefficients of variation, ,cv , and (6) the mean of 28 values of comput ed ,cv' with no harmonic 
being significant. 
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Fig . 3. 4 Densities of means and standard deviat ions, and the coefficients of variation of 28 intervals of the 
year , each 13-days long , for hourly precipitation series at Ames , Iowa (1949 - 1966, or 18 years): (1) 
computed densities of means, m, , in inches per hour; (2) fitted. periodic component, ll, , to densit ies of 

means , composed of the significant first harmonic; (3) computed densities of standard deviations, s, , 

in inches per hour; (4) fined periodic component , o, , to densities of standard deviations, composed of 

only t he fi rst significant harmoni c; (5) computed coefficients of variation , C , and (6) the mean of 
28 values of computed C , with no harmonic significant . ' v 

T V 

precipitation . Righthand graphs show the computed 
coefficients of variation and either t he fitted peri­
odic components of significant harmonics or the mean 
value of these coefficients . 

Significant harmonics are determined in this case 
by using the fol l owing approach . Any parameter v, has 
the equation for its periodic component : 

\) 

'f 
\) + 

X 
(A. cos A.T + B. sin A.T) , 

] J ] J 
(3 . 4) 
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where A. • 2nj/w is the angular frequency, w = the 
] 

number of ordinat es i n the basic period in v
1

, m = 
the total number of harmonics inferred as significant 
in the Fourier series mathematical description of the 
periodic component , A. and B. are Fourier coefficients, 

J J 
j = significant harmonics , and vx = t he mean of w valu~ 

of v, with' = 1,2 , . . . ,w. In this particular case w = 
28, and v

1 
refers to either~, . o

1 
or a, , respectively 

for m
1

, s, , and ,cv . 



Coefficients A. and B. of eq . (3. 4)are estimated 
J J by 

A. 
J 

(3 . 5) 

and 

B. 
J 

(3 . 6 ) 

For w ; 28 , t he maximum number of harmonics is 
W/2 , or w/2 ; 14 . Experience shows that the first six 
harmonics ar e t he most important, or 1 :5. j :5. 6 ; harmon­
ics beyond the sixth are very rarely shown to be 
significant. 

The square of amplitude of any harmonic is 

C~ = A~ + B~ 
J J J 

(3 . 7) 

and the part of variat ion of any paramet er v
1 

resulti ng 

from this harmonic is C2/2 . The variance of v is 
J T 

var v 
T 

and t he parameter 

w 1 
l: (v -v ) 2 , 

W T=l T X 

c2 
max 

g =~ 

l: c~ 
j =1 J 

(3 . 8) 

(3 . 9) 

is Fisher ' s parameter for testing the significance of 
t he harmoni c with the largest C .. As onlv six harmonics J • 
are computed in this study for the three parameters, 
t hen 

g 2 var v ·r 
(3. 10) 

replaces eq . (3 . 9) because both give identical values of 
g. By using R.A. Fisher's [2) expressions and tables, 
and probability P = 5% , t he critical value gc is 

determined for test ing the significance of g of eq . 
3.10. If g > g = 0.3517 , the harmonic is considered 

c 
as significant . For t he second , third , ... highest 
values of c~. then 

J 

c2 
g - j-1 

2 var v E c2 
T iml i 

(3 . 11) 

where :ct represents all harmonic~ with c1 greater 

than c.' wi t h i demoting the ~equence of c2i from the 
J 

highes t t o the smallest C .. The same test is =epeated 
J 

f or g of eq. (3 . l.J,) as for g of eq . (3 .10} 

Figures 3. 1 through 3.4 show t he fitted p•riodic 
components composed of hamonics which have been found 
s ignificant by the above procedur e . I t is expect ed 
Jiffer~nces between computed values of m1 , s1 and 

C and the fitted periodic components of significant 
' v 

harmonics , ~T ' OT and a
1

, r epr esent only t he sampling 

random variation about these periodic components . 

Figure 3.1 for Durango Precipit a t ion Station shows 
clearly a periodicity in both the means and s t andard 
deviations of 28 i ntervals of 13- days . These perio­
dicities in m, and s, are similar , though t he sampling 
variations oomewhat mask this parall elism. The signifi­
cant harmonics of 365 days of the per i odicity i n the 
coefficient of variat ion has a very small amplitude . 
For practical purposes, it can be neglected, with C 
being approximately a cons tant. 1 v 

Fi gure 3. 2 for Fort Col lins Precipitation Station 
shows a very pronounced peri odi city in all three par ame­
ters, m

1
, s

1 
and ,cv ' though the periodicity in 

1
Cv 

has a much smaller amplitude of the basi c 365- day 
harmonic. A comparison between Durango and Fort Collins 
stations points out some clear differences i n time 
patterns of precipitation amounts in t he s equence of 28 
values of 13- day i ntervals . 

Figure 3 .3 for Austin Precipitation Stat ion shows 
a periodicity in m, , lvhile harmonics in s T are not 

shown as bei ng significant . The coefficient of varia­
tion, 

1
Cv' does not show significant harmonics either. 

A parallelism bet~<>·een mT and s
1 

series is evident, 

though the sampling variations make this property less 
obvious . 

Figure 3. 4 for Ames Precipitation Station shows a 
periodicity in the mean, m , and t he s t andard deviations, 

T 
s,. The parallelism of periodic components is a strik-

ing feature of this seri es of hourly pr ecipitat ion. 
Because of a short period of data of only 18 years, the 
variations of observed val ues m and s about t he fitted 

T T 

periodic components of ~. and o
1 

are likel y to be pre-

dominately of a sampling character. This aspect is best 
r epr esent ed by ,cv ' which does not show any signi ficant 

harmonic. It may be assumed to be approximately a con­
stant , independent of t he time of the year. 

3 .4 T1;o approaches of using the research data. 
The theory in the preceeding chapter is pri mar ily 
related to precipitation storms as continuous processes 
whenever i t rains . \1~1en the precipitation data are 
given as dai ly values , the appropr i ate defi nition of 
the storm is required . In that case , and for the pur­
poses of this study , the storm is defined as a precipi­
tation sequence consisting of an unint errupted number 
of rainy days. If the records show only one rainy day 
~<>•i t h the preceeding day and the following day as non­
r ainy days, then t he s t orm is of 1-day dura t ion and its 
total amount is the rainfall of that day . If the rec­
ords show four uninterrupted rainy days, then the storm 
duration is f our days and its tot al amount is the sum 
of r ainfall for these four days . This definition is, 
therefore , related to a discrete series . The random 
variable, which represents the t ime a s t orm ends, i s 
no1~ the last day of an uninterrupted sequence of dail y 
::-ainfall. fhe storm durati on is the number of rainy 
days of a storm . 

Regar a l ess of this storm definition, t~o~o appr oaches 
;;ere used in processing the research data : l l ) Each r ainy 
day is created as an individual storm event , 1o~hether or 
not it is preceeded or followed by a raiily or non-rainy 
day , and (2 ) Each storm is i dent ified as an uninter­
I·uptcd sequence oi rainy days , as defined i n the previ­
ous paragraph . It is not expected that theoret ical 

18 



devel opment of t he preceeding chapt er would fit 
the properties of daily precipitation in the first 
approach. The second approach is consi dered more cru­
cial in t est ing the coincidence of theoretical models 
to the empirical distributions of random functions in­
vestigated in Chapter Il. llowever, the real storm 
durat i on may be shorter than the number of uninter­
rupted sequence of rainy days . 

The hourly rainfall of the Ames Precipitation 
Station is al so treated by these two distinct approaches 
because it is attractive t o consider each hourly value 
as an individual storm event, regardless whether or not 
it is preceeded or followed by a rainy or non-rainy 
hour . Second, the storm is defined in this case as an 
uninterrupted sequence of hourly precipitation greater 
than zero, preceeded and succeeded by non-rainy hour or 
hours. Because the thunderstorm type of rainfall may 
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frequently be composed of a succession of rainy and 
non-rainv hours .. The use of each hour of rainfall as 
being a ~torm for the study of precipitation phenomenon 
produces a large number of small storms . For this 
reason, only careful inference about s t orms 1in the 
fi rst approach, in case of hourly precipitat ion can be 
drawn. 

In conclusi on, t he fact that t he rainfall data is 
currently availab le in the form of hourly or daily 
values, and not as a continuous {( } random process 
whenever i t rains , makes it diffic~lt for an exact com­
parison between the theoretical and empirical distri­
butions to be made . Regardless of this, the second 
approach t o bot h dail y and hourly series of storm defi­
nitions comes as close to tho random process {(t) as 
practicall y feasible, (although it i s somewhat biased) . 



Chapter IV 

DENSITY OF STO~IS IN TI~1E 

4 .1 Significance and computat ion of the parameter 
of density of storms in time. The analysis of six ran­
dom variables , which are discussed in Chapter II as 
func tions of the stochastic process {~ } has shown that 

t 
some of their distributions are dependent on ~ 1 . This 

par ameter ~l is the average number of storms in a unit 

of time during any time of the year . It is briefly 
called in the title of this chapter and in t he following 
t ext as "the density of storms i n time ." The basic con­
clusion in the previous analysis is that the existence 
of periodicity in the {~t}-process is reflected as the 

periodicity in the parameter ).. 1 . The year is the basic 

per iod . In other words, the annual periodicity in the 
mean, in the s tandard deviation and eventually in other 
parameters of the basic process {~t} imposes the perio-

dicit y in A1-parameter. Through ).,1 , all other r andom 

variables, which are functions of t~t } -process and 

dependent on Al, should exhibit a periodicity similar 

to the par ameter )..
1

. 

Numer ical characteristics of )., 1-parameter are in­

vestigated in this chapter for the four exampl es of 
precipitation storm data described in Chapter I II. Tho 
number of ends of storm events in each 13-day t i me in­
terval is determined as integers 0 , 1, 2 , . . . , which 
represent a l so the number of storms . The total of n 
values of t his number for n :•ears of data is obtained 
for each 13-day interval and for each station . Then 
the expected value , the var1ance and the ratio of vari­
ance t o the expected value of this number of storms are 
comput ed for each interval. These values are obt ained 
both for the rainy days, with each rainy day considered 
as a storm, and for the s torms, defi ned as uninterrupted 
sequences of rainy Jays, and for each of the three 
series of daily precipitation . Simi larly, they are 
computed bot h for rainy hours , wi th each rainy hour con­
sidered as a storm, and for t he storms, defined as unin­
terrupted sequences of rainy hours, for one ser ies of 
hourly precipitation. The expected values (means) and 
variances of these numbers of storms are t hen divided 
by 13 days for daily rainfall series , or by 312 hours 
(13 x 24) for hourly rainfall series , in order to r educe 
these values to a unit of t ime. In th~s new form, they 
are considered as densi t ies in time over t he year. 
These densities of means ar e defined as A 1-parameter. 

The 28 intervals and their corresponding densities of 
means, plotted for each i nterval, give a sufficient num­
ber of points for the s tudy of variation of >t 1-paramct er 

w1thin the year . Si milarly , the 28 densities of vari­
ance and the 28 values of r atio of the variance to the 
mean (or the 2S values of the ratio of "he density of 
variance to >.1) are plotted against time t o sho1~ t heir 

variations within the year. 

~ . 2 Daily precipitat1on series at Durango , 
Colorado . Figure 4 .1 shows the propert ies of ).,1-

paramet er of r ainy days as a function of t i me t, with 
each rainy day consider ed as a s tonn . Figure 4.2 gives 
t he s arne properties of X 1-purruneter of s torms whic.:h arc 
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defined as uninterrupted sequences of rainy days. 
Figure 4 . 3 shows t he ratios of ).,1-parameter for the 

fi rst definition (Fig . 4.1 ) and the second de finition 
(Fig . 4.2) of storms. 

Upper graphs of Figs. 4 .1 and 4 . 2, lines (1), show 
~l to follow periodic movements . Mainly, a 365-day 

basic harmonic is present as significant in both fig­
ures, given as l ines (2) , while Fig . 4 .1 also shows 
the fifth harmonic (73 days ) to be significant. It is 
evident t hat t he 959• probab lity level in Fisher's test 
of significance of harmonics does not show a very good 
fit . 

In both cases, central graphs of Figs . 4 .1 and 4 . 2 
and their lines (3) show that t he densities of vari­
ance have no significant harmonics. Instead of perio­
dic movement s , t he aver age value of these densities i s 
given as lines (4) in these figures . 

Lines (5) in Figs . 4.1 and 4.2 give the ratios of 
densities of variance and )., l values , while lines (6) 

show the f i tted per i odic components of significant 
harmonics . It should be expected that a ratio of two 
parameters , one with no significant periodic movement 
and the other with periodic movement of small ampl i­
tudes, ~;•ould have either small amplitudes , when s i gnifi ­
cant harmonics are shown, or would show no s igni fican t 
harmonics . This is the case with l ines (5) and (6) in 
Figs . 4.1 and 4.2, with relatively small ampli tudes of 
significant harmonics . 

For a Poisson distribution t o be applicable t o the 
distribut ion of the number of storms in an interval, it 
should be expect ed for the densit y of variance to be 
equal to ).. 1 . Their ratios should be close to unity 

with no significant harmonics. 1he results pres en t ed 
in lower graphs of Figs . 4 .1 and 4. 2 do not confi.nn 
either of these two expected properties of ratios . The 
average ratio i s 1.672 for rainy days, and 0 . 641 for 
storms . as shown by lines (5) and (6) in Figs. 4 .1 and 
4 . 2, respectively. The ratios of f i tted periodic com­
ponent of Fig . 4 .1, line (6) , fluctuat e between 1.4 
and 2.0, for rainy days, and between 0. 58 and 0. 70 for 
storms as shown by periodic components of Fig. 4 . 2, 
line (6) . 

Deviations of the above ratios from unity, 
14hich in the case of rainy days arc above unity 
and i n the case of s torms arc be l ow the unity, may be 
the result of definitions of storms used i n thls s tudy 
for the types of data available. In the first case of 
rainy days being considered as s torms, t here are more 
rainy days than there are true number of storms. In 
the second case of storms bcnng defined as uninter­
rupt ed sequences of rainy days, the true number of 
storms seems to be greater than the number of s t orms 
determined as unint errupted sequences . In the first 
case , the densities of variance of Fig . 4. 1, lines (3) 
and (4) , may be larger than the densit ies of var iance 
of the true number of storms . In the second case of 
Fig. 4. 2 , the resul ts may be converse . These differ­
ences between the ratios of Figs. 4 .1 and 4. 2 are 
shown to be syst ematic.:, becau~e they appear also jn 
the other throe stations, as shown later in the text . 
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Fig . 4 .1 Properties of ~ 1 -pararneter (density of number 

of stonns in time) for daily precipi tation series at 
Durango, Col orado, t•ith each r ainy day considered as a 
storm: (1) computed A1 val ues; (2) periodic component 

of significant harmonics fitted t o AI values; (3) com­

put.ed density of variance of the number of stonns per 
interval; (4) average density of variance; (5) ratios 
of the density of variance to A

1
, and (6) periodic 

component of significant harmonics fitted to the rati o 
of density of variance to ~1 . 

As it concerns the second departure f rom the ex­
pected patterns relat ed to the ratio of densi ties of 
variance to the A1-parameter values, the amplitudes of 

fitted periodic components for Durango precipitation 
data are relatively small. The ot her stations do not 
show these periodicit ies in ratios at all, so the case 
of Dur ango daily precipitation series and the smal l 
periodicity may be assumed as being a product of sam­
pling variation with the small probability of occur­
r ence ,rather than to be a systematic pattern. 

Figure 4. 3 sho11·s t hat the ratios of the mean num­
ber of rainy days per interval to the mean number of 
storms per interval, as defined above, fluctuate in a 
narrow band . The mean ratio of 28 interval values is 
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Fig. 4 . 2 Properties of A1-paramoter for daily precipi­

tation series at Durango , Colorado, with storms defi ned 
as uninterrupted sequences of rainy days : (1) computed 
Al values; (2) periodic component of significant har-

monic fi t ted to ~l values; (3) computed density of 

variance of the number of storms per interval; (4) 
average density of var iance ; (5) ratio of t he density 
of variance to A1; and (6) periodic component of sig-

nificant harmonic fitted to the rati o of densit y of 
variance to /, 1. 

2.034 . The average duration of storms , defined as un­
interr upted sequences of r ai ny days, is about t wo days . 

Table 4. 1 shows the main properties ofthe A
1
-parame­

ter and of other parameters of the number of s torms per 
interval for t he Durango Station , computed from 28 in­
terval values . Ratios of amplitudes of f i tted periodic 
components to the means of parameters , as shown in 
Table 4.1, vary from 7.4% to 19.6% . For A

1
, they are 

15 .4% and 7. 4% . Periodic components in Al and in other 

parameter s of the number of storms per interval for 
Durango are of r e latively small practical significance. 
The parameter Al is close to being a constant . 
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Fig. 4.3 Ratio of Al of Fig . 4.1 (A1 for rainy days 

considered as storms) to Al of Fig . 4.2 (A
1 

for storms 

defined as uninterrupted sequences of rainy days) , f or 
daily precipitation at Durango, Colorado. The average 
ratio is 2 . 034. 

The question of the expected value of Ai , where 

Ai are t r ue values of A1, if storms would be given as 

intermit tent event s and not as either the rainy days 
or uninterrupted sequences of rainy days, is discussed 
in Subchapter 4. 6 . The fact that the first approach of 
definition of storms gives E(A1) = 0 . 238, and the sec-

ond approach yields E(A
1
) = 0.116 points out that E(Ai) 

should be somewher e between 0 .116 and 0.238. 

4 . 3 Daily precipitation series- at Fort Collins , 
Col orado . Figur e 4 .4 shows the properties of A1-parame-

ter of rainy days as a function of time t, with each 
rainy day considered a storm. Figure 4.5 gives the 
properties of A1-parameter of storms which are defined 

as uninterrupted sequences of rainy days. Figure 4. 6 
shows the ratios of A1-parameter for the first (Fig . 

4 .4) and the second definition (Fig . 4. 5) of storms . 

Upper graphs of Figs . 4.4 and 4.5, l ines (1), 
show Al to cl early fol low periodic movements. Only the 

365-day basic harmonic is shown as signi ficant i n both 
figures as lines (2) . The oscillations of l i nes (1) 
around lines (2) may be consi dered as t he pure sam­
pling variation. Fisher' s tests of significant har­
monics show good fits. 

The centr al graph of Fig . 4.4, line (3), shows 
also a periodic movement for the densit y of variance, 
while l ine (4) represents the fit of t he periodic com­
ponent with onl y the basic 365-day harmonic being sig­
nificant . However, the central graph of Fig . 4 .5, 
l ine (3), does not show any s ignificant harmonic in t he 
density of variance for t he second definition of 
storms . 

TABLE 4. 1 

PROPERTIES OF A1-PARAMETER AT DURANGO 

Definition Amplitude Ratio of 

Parameter of Expected Variance of Periodic Amplitude 
Value to Expected St orms Component Value 

Al 
Rainy days 0 . 238 0 . 0038 0 . 0367 0.154 
Storms 0.116 0.0008 0.0086 0.074 

Densi ty of Rainy days 0 . 382 0.0034 
Variance St orms 0 . 071 0 .0001 

Ratio of Rainy days 1.672 0 . 0965 0 . 3291 0.196 Density of 
Variance to Storms 0.641 0 . 0203 0.0612 0.096 

Al 

Lower graphs of Figs . 4 . 4 and 4.5 , lines (5), give 
t he ratios of densities of variance t o Al values . Lines 

(6) give the averages of these ratios . There is no 
signi ficant harmonics in these ratios . I t meets one of 
the basic condit ions for the number of storms i n an in­
terval to follow the ~oisson distribution . The average 
rat ios are : 1. 496 and 0 . 669 , respect ivel y for the two 
definitions of storms . These are the same patterns as 
for the previous series of daily precipitation. The 
same explanations for the aver age ratios not being 
unities i n Figs . 4 .4 and 4.5, lines (6) , may be ad­
vanced as it was done for Figs . 4 .1 and 4 . 2 . 

22 

Figure 4.6 shows that the ratios of the mean num­
ber of rainy days per interval to t he mean number of 
storms per interval, as defined for Figs . 4.4 and 4.5, 
fluctuate in a relatively narrow range ( 1 .4 - 2 .1) , 
though a periodicity is not excluded. The aver age 
ratio of 28 interval values is 1. 76 . 

Table 4 . 2 shows the main properties of A
1

-parame­

ter and the other parameters of the number of storms 
per interval for the Fort Collins Station, computed 
from 28 interval values. Ratios of amplitudes of 
fitted periodic components to the means of A 1-parameter 
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Fig. 4 . 4 Properties of A1-parameter (the density of 

the number of storms in time) for daily precipitation 
series at Fort Collins, Co lorado, l>'ith each rainy day 
considered as a storm: (1) computed A1 values; (2) 

periodic component of significant harmonics fitted to 
computed Al values; (3) computed densities of variance 

t o the number of storms per interval; (4) periodic com­
ponent of significant harmonics fitted to the densities 
of variance ; (5) ratios of the density of variance to 
A1; and (6) average ratio of density of variance to A1. 

in the two cases of rainy days and storms are 41.3% and 
29 . 7%, respectively. Periodic components in Al are 

rel atively large, so that Al for the Fort Col l i ns 

Station is highly periodic. A similar ratio of 35 . 0% 
was shown for the density of variance for rainy days . 
It was zero for the density of variance of st orms 
because it has no significant harmonics . 
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Fig . 4.5 Properties of A1- parameter for daily precipi­

tation series at Fort Collins, Colorado, with st orms 
defined as uninterrupted sequences of rainy days: (1) 
computed I. 1 values; (2) periodic component of signi fi-
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cant harmonics fitted to computed Al values; (3) com­

puted densit i es of variance of the number of s t orms per 
i nterval; (4) the average of computed densi ties under 
(3); (5) ratios of the density of variance to A 1; and 

(6) average ratio of dens i ty of variance t o Al. 

The question of the expected value of A i, for A i 
being the t rue Al values, i n case the storms are given 

as intermittent events of continuous rainfall intensity 
during any storm , is discussed in Subchapter 4.6. As 
E(A

1
) = 0.211 for rainy days and E(A1) = 0. 118 for 

storms , in the first and second definition of storms, 
the expected val ue, E(Ai)• of t he t r ue number of storms 

should be somewhere between 0 . 118 and 0.211. 
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Fig. 4.6 Rat io of Al of Fig . 4.4 (A1 for rainy days 

consider ed as storms) and Al of Fig . 4.5 (A1 for 

storms defined as uninterrupted sequences of rainy 
days) , for daily precipitation at Fort Coll i ns , 
Colorado . The average ratio is 1.760. 

4 . 4 Daily precipitation series at Austin, Texas . 
Figure 4.7 shows the properties of A1-parameter of 

rainy days , as a function of time t, with each rainy 
day considered as a storm. Figure 4. 8 gives the same 
properties of A 1-parameter of storms which are defined 

as uninterrupted sequences of rainy days . Figure 4.9 
shows t he ratios of A1-parameter for the first (Fig . 
4 . 7) and the second definition (Fig . 4.8) of storms. 

Upper graphs of Figs . 4 . 7 and 4.8, l ines (1), 
show Al to follow periodic movements. Lines (2) 

represent the fitted periodic components of significant 
harmonics . The sampling variations in lines (1) do not 
permit a detec t ion of higher harmonics with a suffi­
cient reliability. Therefore, a small difference in 
significant values of g, by Fisher's tests makes one 
higher harmonic included in line (2) of Fig~ 4.7 while 
another higher harmonic in line (2) of Fig. 4.8. 

Central gr aphs of Figs . 4 .7 and 4. 8, lines (3), 
show no significant harmonics in densities of variance . 
The average values are presented in Figs . 4 . 7 and 4.8 
as lines (4) . The second central moments which underly 
these densities, have a much larger sampl ing variation 
than the first moments about the origin for l ines (1) 
of Figs. 4 . 7 and 4.8. Therefore, these differences 
in sampling variations may expl ain why the tests for 
the densities of variance may not show the significant 
harmoni cs of periodic component while they show for A)­
parameter. 

Similarly for the lower graphs, the ratios of the 
densit y of variance to A1, as shown in l ines (5) of 

Figs . 4 .7 ann 4.8, do not have any si2nificant harmonics. 

TABLE 4.2 

PROPERTIES OF A1-PARAMETER AT FORT COLLINS 

Definition Amplitude Ratio of 

Parameter of Expected Variance of Amplitude 
Value Periodic to Expected St orms 

Al 
Rainy days 0. 211 
Storms 0 . 118 

Density Rainy days 0 . 312 of 
Var iance Storms 0 . 077 

Ratio Rainy days 1.496 Density of 
Variance to Storms 0 . 669 

Al 

Lines (6) give the average values of these ratios as 
1.485 for rainy days considered as storms , and 0.672 
for s t orms defined as uninterrupted sequences of rainy 
days . The conditions of the ratios of dens ity of vari­
ance to Al not showing any periodicity is fulfilled, 

assuming that the number of storms i n an interval 
follows the Poisson distribution. However, the average 
ratios of 1.485 and 0.672 depart from the expected 
values of unity , as it was discussed in the two previ­
ous examples . 

Figure 4 .9 shows t hat the ratios of the mean num­
ber of rainy days per int erval to the mean of storms 
per i nterval, or ratios of Al of Fig . 4. 7, line (1) 1 

ComEonent Value 

0.0044 0 . 0874 0.413 
0. 0007 0 . 0350 0.297 

0.0107 0 . 1094 0.350 
0. 0002 

0. 0874 

0.0159 
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to Al of Fig . 4. 8, line (1), f luctuate also in a narrow 

band of 1. 43 - 2 . 08. The average ratio of 28 interval 
values is 1. 764 . The average duration of storms, 
defined as uninterrupted sequences of rainy days, is 
about 1 and 3/4 days. 

Tabl e 4 .3 shows the main properties of A1-parame­

ter and the other parameters of the number of s t orms 
per interval for the Austin Station , computed from 
28 interval values. Ratios of amplitudes of fi tted 
periodic components to the means of A1-parameter in the 

t wo cases of rainy days and storms are 20 .4% and 24.1% , 
respectively . The periodic components in A1 are 
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Fig. 4 .7 Properties of A
1
-parameter (density of num­

ber of storms in time) for daily precipitation series 
at Austin, Texas, wi th each rainy day considered as a 
storm: (1) computed Al values; (2) periodic component 

of .significant harmonics fit ted to Al values; (3) com­

puted densities of variance of the number of storms 
per interval; (4) average density of variance ; (5) 
ratios of the density of variance to A1 ; and (6) 

average ratio of the density of var iance to A1. 

sufficiently large, so that Al for the Austin Station 

can be assumed to be highly periodic. No periodic 
components are f ound in other parameters . The expect ed 
value of the true values Ai for the Austi n Station are 

discussed in Subchapter 4.6, as for other stations . 

4 .5 Hourly precipitation series at Ames, Iowa. 
Figure 4. 10 shows the properti es of A1-parameter for 
rainy hours, as a f unction of the time t , with each 
rainy hour considered as a storm. Figure 4.11 gives 
the same properties of A1-parameter of storms which 

are defi ned as uninterrupted sequences of rainy.hours . 
Figure 4.12 shows the ratios of A1-parameter for the 

first (Fig. 4.10) and the second definit ions (Fig . 4 . 11) 
of storms. 
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Fig. 4. 8 Properties of A1-par ameter for daily p·recipi­

tation series at Austin, Texas, with storms defined as 
uninterrupted sequences of rainy days: (1) computed 
Al values; (2) periodic component of significant har-

monics f i tted t o Al val ues; (3) computed densities of 

variance of the number of storms per interval; (4) 
aver age density of variance; (5) ratios of the density 
of var iance to Al and (6) average ratio of the density 

of variance to A1. 

Upper graphs of Figs . 4.10 and 4.11, lines (1) , 
show Al t o clearly follow periodic movements. Only 

the annual basic harmonic is present as significant in 
both figur es , as shown by fitted periodic components of 
significant harmonics of lines (2). Neither the densi­
t ies of variance, lines (3) , nor the ratios of these 
densities to A

1
-parameter, lines (5), demonstrate any 

significant harmonic in Figs . 4.10 and 4.11. Lines (4) 
and (6) give the average values . The patterns and t heir 
explanations are similar to those of the previous exam­
ple for Austin. 

The average ratios of the density of variance to 
A 
1

, of 8. 892 for rainy hours , with each rainy hour con-

sidered as a s·torm, and of 2. 350 for storms, and defined 



TABLE 4.3 

PROPERTIES OF t. 1-PARAMETER AT AUSTIN 

Definition Amplitude Ratio of 

Parameter of Expected Variance of Amplitude 
Value Periodic to Expected 

2. 2 

2. 0 

1.8 

1,6 

< .8 
Q; 

~ .6 

g 
,II 

.;! 

o. 

Storms 

t.l 
Rainy days 0.214 
Storms 0.121 

Density of Rainy days 0.315 
Variance Storms 0.080 

Ratio Rainy days 1.485 
Density of 
Variance to Storms 0.672 

" l 
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Fig. 4.9 Ratio of >.
1 

of Fig. 4.7 (>.
1 

for rainy days 

considered as storms) and >.1 of Fig. 4.5 ~l for storms 

defined as uninterrupted sequences of rainy days) for 
dail y precipitation at Austin, Texas. The average 
ratio is 1. 764. 

as uninterrupted sequences of rainy hours, merit a 
special discussion which is given in the next sub­
chapter. It relates also to the previous three 
examples of Durango, Fort Collins, and Austin daily 
precipitation series. 

Figure 4.12 shows that the ratios of the mean num­
ber of rainy hours per interval to the mean number of 
storms per interval, or ratios of >.1 of Fig. 4.10, 

line (1), to >.1 of Fig. 4. 11, line (1) , al so fluctuate 

Component Value 

0 .0015 0.0436 0.204 
0.0003 0.0292 0.241 

0.0045 
0.0002 

0 .0551 

0.0166 
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in a narrow band of 2 .25 - 3.60, except for a value at 
the 25th interval (5.22). The average ratio of 28 
interval values is 3.11. Therefore, the average dura­
tion of storms , defined as uninterrupted sequences of 
rainy hours, is about three hours. 

Table 4.4 shows the main properties of >. 1-parame­

ter and the other parameters of the number of storms 
per interval, for hourly precipitation at the Ames 
Station, computed from 28 interval val ues . Ra~ios of 
amplitudes of fitted periodic components to the means 
of >.1-parameter for both the rainy hours and storms as 

shown in Fig. 4 . 10 and 4.11, vary from 29. 7\ to 32.1%. 
This represents a clear periodicity in >. 1-parameter at 

the Ames Station. As the expected values of >.1 are 

E(t.1) • 0.0535 and E(t.1) = 0.0175 for the two cases, 

the expected value of "i· obtained from the true num­

bers of storms in an interval, should be between these 
two expected values. If multiplied by 24 , they refer 
to >.

1 
per day instead per hour. This item is discussed 

in detail in the next subchapter. 

4.6 Discussion of ratios of variance to the mean 
of number of storms in each interval. Figures 4 . 1, 
4.2, 4.4, 4.5, 4.7, 4.8, 4.10 and 4.11, lines {5), 
give t he ratios of the variance to t he mean of the num­
ber of st orms for each interval, with this number as 
the random variable. These ratios are identical to 
ratios of the density of variance (as given by lines 
(3) of these figures) to the x

1 
values (as given by 

lines (1) of the same figures) and for both definition 
of. storms . 

The basic derivation in this paper i s that the 
number of storms in a sufficiently small interval of 
time within the year should follow the Poisson distri­
bution. In that case, the variance and the mean of the 
number of storms in each interval should be equal, or 
the ratios of the density of variance and >. 1 should be 

unities regardless of t he position of the small inter­
val. However, because of sampling variations, it 
should be expected for these ratios to fluctuat e ran­
donly about the value of unity. Out of the above eight 
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of significant harmonic fitted to Al values; (3) com­
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for 

figures for the four exampl es discussed, only the exam­
ple of Durango daily precipitation series (Figs . 4.1 
and 4.2) show a significant periodic component in these 
ratios. However, as it was discussed earlier, the 
amplitudes of t hese periodic components are relatively 
small. The other three examples and six figures (4.4, 
4 . 5 , 4.7, 4.8, 4.10, and 4.11) show these ratios not 
to be significantly different from constants. These 
constants as the average ratios (for Figs. 4.1 and 4.2 
also as the average ratios) are not unities as it is 
expected for Poisson distribution . 

The explanation for this discrepancy of expected 
and computed average ratios of the variance to the 
mean should be in the definition of the number of 
storms. Because data is given in form of daily and 

hourly values of precipitation, the number of storms as 
determined by either of the two definitions of storms 
may be different from the true number of storms . 

The true number of storms is denoted by nk. The 

definition of each rainy day or each rainy hour being 
considered as storms produce the number of s torms,ni' 

in each interval and for each year . Similarly n . 
.> J 

is the number of storms defined as uninterrupted 
sequences of rainy days or rainy hours in each interval 
and for each year. Let denote n./nk as c. and n./nk 

1 1 J 
as cj. The A

1
-parameter and the density of variance 

are defined as 

n 
A _1_ l: 

1 n · llt i=l 
11

i 

and 

where n • 
interval. 

number of years and 6t = length of an 
By replacing ni by cink' then 

and 

vd 

The ratio 

n 

&. n 
A =-1-l: 

1 n · 6t k=l 
11
k 

e:.2 n 
1 

n 
l r (nk -n:Tt" - r 

i=l nt.t k=l 

n 

n ) 2 
k 

n 

( 4 .1) 

(4 . 2) 

(4 . 3) 

(4 .4) 

l: (ni -.Al6t) z l: (nk -
1 

l: 11 )Z 
vd n6t k i=l k=l k=l 
~" n €i n (4.5) 

r ni r Ilk 
i=l kcl 

TABLE 4.4 

PROPERTIES OF A1-PARAMETER AT AMES 

Definition 
Amplitude Ratio of 

Parameter of 
Expected Variance of Ampl itude 

Storms 
Value Periodic to Expected 

Component Value 

).1 
Rainy hours 0.0535 0. 0002 0.0159 0.297 
Storms 0.0175 0 . 0000 0.0058 0.321 

Density Rainy hours 0.4724 0.0537 
of Storms 0 . 0410 0.0003 

Variance 
Ratio of Rainy hours 8. 8920 12.6152 
Density of 
Variance Storms 2.3503 0.8800 

to ).
1 
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or it is ~i-times greater than the ratio in the case 

of tTUe number of storms . 

Similarl y, in t he s econd 
t. represents the constant to 

J 

definition of storms, 
be determined as was t. 

l 
in eq. (4. 5) . Therefore , if~ - and~ - are computed, 

1 J 
they can be used as average values t o reduce the 
numb-er of storms , n. or n. , of the two definitions of 

1 J 
storms, or to obtain the true number of storms. Table 
4. 5 summarizes values of E . and e: . for the four 

1 J 
examples in this study. 

Designating the true value of >.1 by Ai and of 

vd by va, then 

v* 
d 

I* 
1 

1 1 
e:. 

1 

(4. 6) 

for the f irst defi nition, and e: . in eq. 4 . 6 for the 
J 

second definition of storms. The average values , E p.
1
), 

as given in Tables 4 .1 through 4.4 for each of t he two 
cases , are divided bye:. or e:. , whichever is relevant 

1 J , 
and the average values of A* , E(A*) are given in 

1 1 ) 
Table 4 .5 computed by 

~<~•ith E . 
1 

storms. 
average 

replaced by E . in the second definition of 
J 

( 4. 7) 

In the case of hourly data at Ames, the 
values of E(Ai) are multiplied by 24 and are 

given in the l ast row of Tabl e 4.5, in order to compare 
them with E(>-i ) values for the other three stations. 

The surprising result i s that E(Ai) i n the first case 

is about 0.143, while in the second case it is about 

TABLE 4.5 

REDUCTION COEFFICIENTS FOR C0~1PUTATION 

Station Precipitation e: . e:. Data 1 J 

E (>. 
1

) 
E(A*) = --

1 ~-
1 

E(A ) 
E(A * ) = --1-

1 Ej 

Durango daily 1 . 672 0.641 0.142 0 . 181 

0.176 

0. 180 

Fort Collins daily 1. 485 0.672 0 .142 

Austin dai l y 1.485 0.672 0 .144 

Ames hourly 8.892 2 . 350 (0 . 0060) (0 . 0075) 

0. 181 Ames for Al mul tiplied by 24 hours 

0. 180, which ar e very consistent numbers in each case . 
An average of the t wo is some1~here around E (), i) = 0 .160. 

However, more research should be done on many station 
examples before these consistent patterns in the two 
sets of E(Ai) values can be explained. To meaningfully 

expl ain these consistent pat t er ns in E (>. i), obtained 

for ~hetwo cases of definition of st orms , precipitation 
data of continuous rainfal l intensities during the 
inte:rmittent st orms, concurrent l y with hourly and 
daily precipitation data, would be required from 
several precipitation stations. 

To obtain the true numbers of storms from daily 
or hourly precipitation data, t he number s of storms 
per interval shoul d be divided either by e: i or e: j ' 

whichever is relevant. In other words, t he bias intro­
duced in the numbers of storms, by using the conven­
tional data of hourly and dai l y precipitation, may be 
correct ed by di viding these numbers by a constant, e: . 

29 

0.144 

This procedure is based on the conclusion of Chapter I I 
that the true number of storms is Poisson-distributed, 
with the mean and variance equal . 

To test whether the number of storms in an inter­
val is a Poisson-distributed random variable , using 
t he hourly or dai l y dat a, the procedure should be> one 
or the other, or both of the above two definitions of 
storms should 'be used. Then the A1-pararnter shoul d be 

computed, and e:. or e: ., or their mean should be deter-
1 J 

mined as the average ratio bet ween the apparent number 
and t he true number of storms . Then all numbers of 
storms, computed for each interval and for each of n 
years , should be divided by E . The distributions of 
the new number of storms should then be teste~ whether 
they are well fitted by Poisson distributions . The 
fini te values of · '·i to be used are the reduced values 

of Ai = A
1

/ e, where Al are computed values from 

daily or hourly rainfall values , and ~ is. the relevant 
reduction coefficient. 



CHAPTER V 

YIELD CHARACTERISTIC OF STORMS 

5.1 Significance and computation of the para­
meter of yield characteristic of storms. The analysis 
of six random variables , which are discussed in Chap­
ter II as functions of the stochastic process {tt}, 

has shown that some of their distributions are depen­
dent on A2. The parameter A2 is t he yield character-

istic of storms given by eq. (2.16) in Chapter II. 
The procedure for computing it is in the following 
text. The basic conclusion in this analysis is that 
the existence of periodicity in the (tt } -process im-

poses a periodicity in the parameter A2 , with the 

year as the basic period, of A2 depends on time. In 

other words, the annual periodicities in the mean, in 
the standard deviation and in some other parameters of 
{(t} -process, for various intervals of the year, are 

reflected also as the periodicity of A2 -parameter . 

This is important because there is often a conviction 
among hydrometeorologists that the average water yield 
per storm is very close to being independent of seasons 
(or of date position in the year). Through A2 all 

other random variables, which are functions of ( Ct} -

process and dependent on A2 , should exhibit a simi­

lar periodicity as the parameter A2. 

Properties of A2 -parameter are studied in this 

chapter for the four examples of precipitation data 
as described in Chapter I I I, Durango, Fort Collins , 
Austin and Ames. Computations of this parameter are 
made in four different ways, and in turn for each of 
the two definitions of storms, except for the rainy 
hours, with each considered as a storm, of Ames 
Station. For each interval, the total precipitation 
of the first rainy day, after the interval begins, is 
determined for each of n years. This gives, for that 
interval, a distribution of the precipitation amount 
of the first rain, x

1 
, with the expected value, 

E(x
1
). Similarly, t he total precipitation amounts of 

the first two rainy days, the first three rainy days, 
and the first fifteen rainy days , after the interval 
begins, are determined for each of n ye ars, as well 
as their corresponding expected values, E(x

2
), E(x

3
) 

and E(x15). For storms defined as uninterrupted 

sequences of rainy days or rainy hours, the total pre­
cipitation amounts, Xi , of the first storm, the first 

t wo storms, the first three storms, and the first ten 
storms , after the interval begins, are determined for 
each of n years, with i : 1, 2, 3 and 10, as well 
as thei r expected values, E(x

1
), E(x2), E(x

3
) and 

E(x10) . As intervals are only 13 days long , it is 

clear that the 15th rainy day or the lOth storm of a 
given i nterval , as defined above, always fall outside 
the cor responding interval, while the third or the 
second rainy day or storm often may occur either in­
side or outside of an interval . Even the first rainy 
day or the first storm falls sometimes to the right of 
an interval , whenever a 13-day interval has no rain. 

This will be evident from t he material presented in 
Chapter VII. 

If the number of storms taken into the computation 
of the total precipitation amount x is v • 1, 2 , 

v 
3 and 15 for rainy days, and v = 1,2 , 3, and 10 for 
storms defined as uninterrupted sequences of rainy days 
or rainy hours, and if the expected value (or the mean) 
over n years of these total precipitation amounts 
are E(xv)' then A2 as the parameter describing t he 

yield characteristic of storms in time is defined by 

(5 .1) 

The yield characteristic of storms is inversely 
proportional to the average yield per s torm, for a 
given time of the year . Instead of A2, the use of 

E(xv)/v may al so be feasible. However, A2 suits 

better various integrals in the distributions of 
functions of u;t) -process, like eqs . (2 .41, 2. 51 

and 2.52) . One must be aware that the greater A2 
the smaller is tho average yield of storms. Values of 
A

2 
are attached to a position of the year, in this 

case to the beginning of each interval , so that it can 
be studied as a function of t ime . By the use of eq . 
(5.1) and four different v values, four graphs of 
28 values of A2 are obtained for 28 positions with-

in the year. As the four examples of precipitation 
data show, t he four series of ~ 2 for di f ferent v 
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values are surprisingly similar in their general pat­
terns. 

5.2 Daily precipitation series at Durango , 
Colorado. Figure 5.1 shows four graphs of A2 as 

functions of the time t, which are composed of 28 
values each representing the beginnings of intervals 
of 13 days, for v • 1, 2, 3 and 15, in the case each 
rainy day is considered as a storm. Figure 5.2 shows 
the similar graphs for v = 1, 2, 3, and 10 in the case 
the storms are defined as uninterrupted sequences of 
rainy days . 

All graphs of Figs. 5.1 and 5.2 are fitted by the 
periodic components of significant harmonics through 
the use of Fisher's tests . These eight graphs show 
that the sampling fluctuations of the computed A2 
val ues about the fitted periodic components decrease 
with an increase of v. For v • 15 in Fig. 5.1 and 
v • 10 in Fig. 5.2, the fitted periodic components of 
two significant harmonics (12-month and 6-month) have 
small differences from the computed A2 values . How-

ever, for v = 1 in Fig . 5.1, only the 12-month har­
monic is signi ficant, with large sampling fluctuation 
of computed A

2 
values about it, while for v = 1 in 

Fig. 5.2 no significant periodic component is shown, 
though general patterns are similar to those of the 
graph for v = 2 in Fig. 5.2 or to those of v • 1 in 
Fig. 5.1. The l arger the sampling fluctuation about 
a periodic component, the l ess likely a harmonic be­
comes significant if the rat io of its amplitude to the 



.:.o 

.(\J 

' . r 
ws.: 
.... 
· C 
• J 

J . O 

5.0 

?. : 

~.5 
~ 
~·.u 
...JJ. 5 

1'\j 

.~ ... 5 
0 

~J.Q 
,..J 

1-ST RA N. DURANGO .COLORADO 

2-ND RA! N I DURAN,GO I COLORADO 

3-RD RA! N.DURANGO , COLORADO 

15-TH RAI N. DURANGO. COLORADO. 

p 
• 0 2 • 6 • 10 12 .. 16 •• 20 22 2111 26 21 50 

FtRIOOS 

Fig . 5. 1. The time function of ~2 - parameter 

(yield characteristic of storms) for Durango, Colorado, 
with each rainy day considered as a storm. The four 
graphs relate to the number of rainy days, which are 
used in computing ~2 (up to 1st r ain , up to 2-nd 

rain , up to 3-rd rain and up to 15-th r ain), andre­
lated t o an interval . 
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Fig . 5.2. The time function of ~2 - parameter 

(yield charact eristic of storms) for Durango, Colorado , 
with each stor m defined as unint errupt ed sequences of 
rainy days. The four graphs relate to the number of 
storms , which are used in computing ~2 (up t o 1-st 

storm, up to 2-nd st orm, up t o 3- rd s t orm and up to 
10- th storm) , and rel ated t o an interval. 



mean value is relatively small . 
a value v the smoother is A2 

Therefore , the larger 
graph . 

Various values A
2

, computed for v = 15 or 

v = 10, are not representative of the initial position 
of a given interval, thus creating a bias, because 15 
rainy days or 10 storms may be spread over a large 
portion of the year and often extend into the next 
year . An attractive approach would be to use A

2 
values of v • 3 - 4. They are a compromise between 
the large sampling fluctuations around a smooth curve 
of A2 for v ~ 1 - 2, and a bias resulting from v 

being very large, say A2 > 5. The Durango data ex­

tend over 71 years . For v = 1, there are 71 values 
of x1 in the computation of E(x1), while there are 

15·71, or 10 · 71 storms in the computation of E(x
15

) 

or E(x10), respectively fo r v ~ 15 of Fig. 5 .1 and 

v = 10 of Fig . 5 . 2. This compromise between t he 
sampling error and the bias of s torms , extended over 
a much longer period than the interval length, looks as 
an unavoidable dilemma in order to produce A2 -func-

tion of time t with the least sampl ing error and a 
minimum of bias . 

Amplitudes of periodic components in Figs . 5.1 
and 5.2 are relatively small in comparison with th~ 
average value of A

2 
• The ratios of amplitude to 

E(A
2

) are given in Table 5 .1 as well as the other 

basic properties of A2. 

Parameters of Table 5.1 show the following pro­
perties. Values of E(A2), for v = 1, 2, 3 and 15 

or v = 1, 2, 3 and 10, decrease with an increase of 
v , from 5.35 to 4.674, in case of Fig. 5.1, and from 
2.372 to 2. 301 in case of Fig . 5 . 2. However, dif­
ferences are small, because the average of four means 
of A2 are 4.942 and 2.324 respectively for Figs. 5 .1 

and 5.2 . The decrease may be explained partly by the 
fact that E(A2) value is the harmonic mean of 

E(x)/v. 

The yield characteristic of s torms depends on 
how well the storm l ength is det ermined, because the 
definition of storm duration greatly infl uences the 
total s t orm precipitation, the greater storm duration, 
the greater the total precipitation . The discussion 
in Chapter IV has shown that the use of ~- ratios 

changes the number of s torms in an interval by changing 
their durations. The average number of days or hours 
of storms is changed by c in order that they come 
close to the average true number of days or hours in 
storms. 

By using the ratio c, 

(5 . 2) 

with c either c i or c j, 1~hich depends on the de­

finition of stor ms, the expected value E(Ai), as the 
true storm characteristic is obtained . As c . a 

1 

1.672 and &j = 0.641, respectively for the two cases, 

then E (A
2
)/c ar e 2.95 and 3.62 as estimates of the 

true value EC>-p . Differences between 2. 95 and 3.62 

may be explained in the same manner as differences in 
E( >- i) have been when the two £(>.

1
) have been 

divided by ci and t j for the two definitions of 

storms. In other words, the storms are of smaller 
durations for the first definition of storms, and of 
larger duration for the second definition of storms 
for daily precipitation series, than are the t rue 
durations of storms. The true value E(Ai) is likely 

to be around 3.25 - 3.30. 

As E(xv) = v/A2 , E(xv) is then v times the 

harmonic mean of A2. Therefore, E(A2) and E(x") , 

v = 1, 2, ... , are not reciprocal values . 
coobined with a smaller fluctuation of A2 

This fact, 
around its 

periodic component for large values of v, may partly 
explain why E(>.

2
) decrease with an increase of v. 

Variances of A
2 

computed from 28 values of >- 2 
for each case of the four values of v show a rapid 
decrease with an incr1ase of v. It compl ies with the 
expected decrease of sampling fluctuations of A2 
about the periodic component with an increase of v . 
However, this decrease of var >. 2, with an increase of 

v , may also be partly due to the harmonic central 
second moment, as shown by eq . (5 . 3) in later t ext. 

Ratios E(A 2);~ show to be much c loser among 

themselves for the eight values of £( >. 2) , in the two 

TABLE 5.1 

PROPERTIES OF A
2
- PARAMETER AT DURANGO 

Figure v E (A
2

) Variance Amplitude C/E(>.2) £(:1.2)/~ 
of A

2 CA 

1 5.350 0 .844 0 . 794 0.150 3. 20 
2 4.903 0 . 654 1.139 0.233 1.672 2. 93 

5 .1 3 4.843 0.555 1.063 0. 219 2 .90 
15 4.674 0.262 0.866 0.184 2 .79 

1 2.372 0.189 0.000 0.000 3 . 70 
2 2.322 0 . 157 0.377 0.1620641 3.63 

5 . 2 3 2.302 0 . 105 0.488 0.212 . 3.60 
10 2. 301 0 .065 0.428 0.186 3.59 
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cases of Fi2s . 5.1 and 5.2, because a division by e: 
forces the two cases closer t o the true duration of 
storms. Ratios of the amplitudes C). of periodic 
component of >.

2 
and 

about 15.0% - 23. 3%. 
mean ratio may be the 

the expected value E(X
2

) is 

This relatively small amplitude­
reason why often x

2 
or its 

inverse is assumed to be a constant in practical in­
vestigation of s torm yields. 

5.3 Daily precipitation series at Fort Collins, 
Colorado. Figure 5.3 shows four graphs of >.

2 
as 

functions of the time t, which are composed of 28 
values each representing an interval of 13 days, for 
v ; 1, 2, 3 and 15, in the case each rainy day is con­
sidered as a storm. Figure 5.3 shows similar graphs 
for v = 1, 2, 3 and 10, in the case the storms are 
defined as uninterrupted sequences of rainy days . 

All graphs of Figs. 5.3 and 5 . 4 have been fitted 
by t he per iodic components of significant harmonics . 
The same pat terns in fluctuation of x

2 
exist for 

this example as for the previous exampl e . The varia­
tion . of x2 about the fitted periodic components de-

creases rapidly with an increase of v . Al l eight 
graphs show t wo significant harmonics, both 12-month 
and 6-month, and in general the same patterns of ).

2
. 

The change of >.
2 

with time seems to be best represent­

ed in cases of v = 2 or v = 3. 

Table 5. 2 gives the basic properties of >.
2 

-para­

met er at Fort Collins Station. The decrease of E(X
2

) 

with v in bot h cases of Figs. 5.3 and 5 .4 may be 
partly expl ained by the fact that E(X

2
) is the har-

monic mean of E(xv)/v . The variation of xv about 

its periodic component affects its harmonic mean. This 
may be a reason for the average value of E(xv)/v to 

be as good or even a better general characteristic of 
storm yields as E(X

2
). 

The variance of x2 decreases rapidly wit h an 

increase of v , al so in this example. It is largely a 
result of sampl ing variation decreasing with an 
increase of v, about the periodic component . I t 
may be because the variance of ).2 is computed by 

the following expression 

(5. 3) 

where Ek(xv) stands for the E(xv) value of the 

k- th 13- days interval. This equati on involves the 
harmonic mean and the harmonic second central moment . 

Ratios of t he amplitude CA of periodic com­

ponent of x2 to E().2) show a good consistency, and 

relatively large values in the eight graphs of Figs. 
5.3 and 5.4. In the first case, they are 34.7\ - 49.5\ . 
In the second case , they are 46.8\ - 73. 4\ . The peri­
odic components in A2 for this example are the im-

portant property. The decrease of CX/E(X2) with an 

increase of v may be due to the definition of A
2

, 

as the inverse of the average storm yield . 

The true expected val ues of A2 , given as E(A2) 
z E(A2)/e:, vary in these two cases between 3. 97 - 4.76, 

and 5.08 - 5.56, respectively. The likely average 
value of Ai is around 4 .70- 4.90. 

5.4 Daily precipitation series at Austin, Texas. 
Figure 5.5 shows four graphs of >.

2 
as a function of 

time, with v = 1, 2, 3 and 15, in the case each rainy 
day is considered as a storm. Figure 5. 6 shows the 
similar graphs for v ; 1, 2, 3 and 10, in the case the 
storms are defined as uninterrupted sequences of rainy 
days . 

All eight graphs of Figs. 5.5 and 5.6 are fitted 
by the periodic components . They al so show that the 
sampling fluctuation of x2 about the fitted periodic 

components decreases with an increase of v . All peri­
odic components, except the first one in Fig . 5.6 for 
v ~ 1, have two significant harmonics, both 12-month 
and 6-month, while the component of Fig. 5.6 for v • 
has only a 12-month significant harmoni c . 

Table 5. 3 gives the basic propert ies of >.2 -par­

ameter at Austin Station. The first four E().2) 

values seem t o slightly decrease with an increase of 
v, while the second four E(A2) values seem to fluc-

tuate randomly about its mean value . It is a signifi­
cant result that E(A2) of Fig . 5.5 and £(>.2) of 

TABLE 5.2 

PROPERTIES OF x2-PARAMETER AT FORT COLLINS 

Figure v E(.\2) Var iance Amplitude C:JE(),2) e: E(>.2)h 
of ).

2 CX 

1 7.125 6 . 209 3.526 0.495 4.76 
2 6.217 3.564 2.849 0.458 1.496 4.18 5.3 3 6.185 3.626 2.805 0.453 4 .14 

15 5.932 1. 700 2.060 0.347 3.97 

1 3. 719 3.143 2. 730 0. 734 5.56 
2 3.654 2.456 2.379 0.651 0.669 

5.46 
5.4 3 3. 633 2.213 2.225 0.613 5.43 

10 3. 396 0 . 928 1.588 0.468 5 . 08 
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Fig. 5.3. The time function of A
2

- parameter 

(yield characteristic of storms) for Fort Collins, 
Colorado, with each rainy day considered as a storm. 
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which are used in computing A

2 
(up to 1st rain, up 

to 2-nd rain , up to 3-rd rain and up to 15-th rain), 
and related to an interval. 
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TABLE 5.3 

PROPERTIES OF x2-PARAMETER AT AUSTIN 

Figure v E(x2) Variance 
of x2 

1 2. 639 0.428 

5.5 2 2.485 0 . 305 
3 2. 515 0.329 

15 2. 341 0.162 

1 1. 354 0. 153 

5.6 2 1. 417 0. 106 
3 1. 389 0.082 

10 1. 348 0.045 

Fig. 5.6 change little with the change of v. This may 
be explained by somewhat smaller variations of x2 
about its periodic components than i n the previous 
cases. 

The variance of x2 rapidly decreases with v 

for Austin. The amplitudes of periodic components are 
relatively large, and their ratios to E(X

2
) range 

from 23.3~ to 34.3\ or between 1/4- 1/3, which is a 
significant variation. As x2 are much smaller be-

tween the 11th and 23rd 13-day interval than for the 
other intervals, the storms during these intervals 
have the largest water yields. 

The use of c-factor gives the true expected values, 
E(Xi), which range between 1.58- 1. 78 for the case of 

Fig. 5.5, and between 2.01 - 2.11 for the case of Fig. 
· 5.6 . The true value E(X2) may be somewhere between 

1.80-1.90. This is less than one half of the correspon­
ding value for the Fort Collins Station . In other 
words, storms at Austin have more than twice the aver­
age storm yield than at Fort Collins . 

5.5 Hourly precipitation series at Ames, Iowa . 
Figure 5. 7 gives four graphs of x

2 
as a function of 

time, with v = 1, 2, 3 and 10 for the case of storms 
defined as uninterrupted sequences of rainy hours. The 
study of each rainy hour being considered as a storm, 
l ike it was done for x1, is not carried out for x

2
. 

Amplitude C/E(X2) t E(X2)/£ 
c\ 

0 . 906 0 . 343 1. 78 
0.763 0.307 1.485 1.67 
0.831 0.331 1.69 
0 .596 0.255 1.58 

0.407 0.300 2.02 
0 .416 0.294 0.672 2. 11 
0 .383 0.276 2.07 
0. 314 0.233 2.01 

All four graphs of Fig. 5 .7 are fitted by the 
periodic components. For v • 1 and v ~ 3 only the 
12-month harmonic is significant, while for v = 2 and 
v = 10 both the 12-month and 6-month harmonic is sig­
nificant. The 6-month harmonic in Fisher's test for 
95% probabil ity level was, in these f our cases, close 
to the critical value gc' with t wo of them a little 

greater and two of them a littl e smaller. 

Table 5.4 gives the basic properties of A2 -par­

ameter at Ames Station, but only for storms as defined 
above. Both the expected values of x2, E(X2), and 

the variance of x2 increase in this case with an 

increase of v. These variations in E(X2) and var x2 
among the four graphs may be of random nature, be-
cause it is likely that most of these storms happen to 
occur within the 13-day interval. The amplitudes of 
fitted harmonics increase with an increase of v. The 
ratio CX/E(X 2) is very high, 43.7% - 65 .1~ , which means 

the periodicity in x
2 

is its important property . The 

values of E(Xi), obtained by cq. (5 . 2), range between 

2. 64 - 2.94, which are relatively consistent values. 
This reversal of the trend of E(>.2) and var x2 with 

an increase of v .for hourly data may be even'tually 
explained by two additional factors : (a) the sample 
size in this case is n: 18 years, while n • 71 . 69 
and 70 in the previous three examples , and (b) the 
definition of storms in this case of hourl y precipita­
tion may bear on t hese results. 

TABLE 5.4 

PROPERTIES OF >. 2-PARAMETERS AT A.'4ES 

Figure v E (:>-2) Variance Amplitude CxfE(/,2) c E(X2)/€ 
of x

2 c>. 

1 6.241 8. 453 2. 725 0.437 2. 66 

5 . 7 2 6.215 9.482 3.995 0 .643 2.350 2.64 
3 6.548 9 . 240 3. 403 0 . 520 2. 79 

10 6.917 11. 001 4.502 0.651 2.94 
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Fig. 5.7 The time function of >. 2-parameter (yield characteristic of st orms) for Ames, Iowa, with each storm 
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stonn) , and related to an i nterval . 

·s . 6 Ratio >.1/>.2 . The ratio of the two parameters , 

>.1 and >. 2 , represents the mean precipitation in the unit 

time inter val , because 

>.
1

t 

E(xt) .. r;-
where t • the interval length, or 

(5 . 4) 

(5. 5) 

The mean precipitation in the unit time interval is 
called the densit y of precipitation in t ime in the 
text that follows . 

The comparison of Figs. 5.1 and 5. 2 with Figs . 
4 .1 and 4 . 2, lines (2) , demonstrates the significant 
harmonics of >. 2 and >.1 periodic components at 

Durango St at ion not to be necessarily in phase. This 
may be because the amplitudes of per iodic components 
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in >.1 and >.2 are all relatively small in comparison 

with E(>.1) and E(>.2) . Therefore, the parameters g 

of significant harmonics may be close to the critical 
value of gc . The line (2) of the lefthand graph of 

Fig . 3.1 is equivalent to eq. (5 . 4) , with t = 13 days, 
but it has t he same shape as the ratio >. 1/ >. 2 of eq. 

(5 . 5) . It shows a small amplitude of a complex peri­
odic component of the density of precipitation in time . 

The comparison of Figs . 5. 3 and 5. 4 with Figs . 
4.4 and 4.5, lines (2), for Fort Collins Station shows 
the significant harmonics of 12-month for >. 2 and >.1 
to be out of phase . This means the l arge >.

1 
has a 

small counterpart in >.2. As the average storm yields 

are the inverse of >.2, this means t hat large densities 

of storms in time have at the same time , or approxi­
mate ly so, the l arge values of the average s torm yield . 
The fact that >.

1 
and >. 2 ar e out of phase at Fort 

Collins Station explains a very large amplitude in the 



line (2) of lefthand graph of Fig. 3.2 for the mean 
precipitation over 28 intervals. 

When periodic components of Al and A
2 

are out 

of phase, there is a large amplitude of periodicity in 
the density of precipitation, if Al and A2 are 

sufficiently periodic. If the periodic components of 
Al and A2 are in phase, it decreases the amplitude 

of perodic component in the mean precipitation. There­
fore, it is possible to have A

1 
and A

2 
with signif-

icant periodic components, but the density of pr ecipita­
tion in time may not show a significant periodicity. 
The density of storms in time and the average yeild of 
storms in time may have compensating periodic compo­
nents to produce non-periodic densities of precipita­
tion. 

The comparison of Figs. 5.5 and 5. 6 with Figs. 
4.7 and 4.8, l ines (2), demonstrate a d i fference both 
in the shape and phases of periodic components of Al 

and A
2 

parameters for Austin Station. The ratio of 

A
1
/A

2
, as equivalent within the multipling constant of 

13, to the line (2) of the lefthand graph of Fig. 3.3, 
shows a relatively ·complex periodic movement for this 
station. 

The comparison of Fig. 5.7 and Fig. 4.11, line 
(2), for the storms at Ames Station, with the storm 
defined as uninterrupted sequences of rainy hours, 
demonstrates a significant shift in phases of the A2 
and Al significant 12-month harmonics . The ratio 

A
1
/A

2 
is then very high, which is confirmed by the 

lefthand graph of Fig. 3. 4, line {2) . 

Basically, the density of precipitation in time 
is decomposed in two fact ors, the density of storms 
in time, A

1
, and the yield of storms, A2. This 

approach provides more insight into the structure of 
stochastic-probability process of s torm precipitation 
than the c l assical statistical parameters, as they 
change with the year. 
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5. 7 Closing remarks . The above four examples 
of properties of A2 -parameter, as it change within 
the year, demonstrate clearly that the average storm 
yield depends on seasons. The eventual contention 
that l/A2 -values, as the average storm yields , are 

not significantly different from a constant, is not 
confirmed by t he above four examples. 

The method 

first v storm 
and for each v 

of computation of A
2 

by using the 

for each interval with v = 1, 2, 3, ... , 
by obtaining A2 as a function of 

time t, roses the problem of which A
2 

-graph should 

be used . For small v, there is a great sampling 
variation of computed A2 about the periodic component. 

For large v, the bias is unavoidable because many 
storms do not pertain to the position of the interval, 
though they are v sequential storms after the inter­
val begins . The suggestion in this study for using 
either v = 3 or v = 4 needs further study, and this 
problem needs to be investigated for a large number of 
stations . As an indirect and practical approach , the 
A2 -parameter should be computed by using eq. (5.4), 

or by 

(5.6) 

The main objection in this latter approach is the 
fact that Al may have a large sampling fluctuation 

which is automatically transferred to A2. The sampl­

ing fluctuation of E{xt), about its true periodic 

component , should be relatively small, as E(xt) is 

the first moment of interval precipitation amount. The 
next objection may be the problem with the definition 
of storms , imposed by the availability of data in form 
of hourly and daily precipitation. This gives either 
shorter or longer duration, and therefore a l so either 
smaller or greater total precipitation of individual 
storms, than would be the case if data are given as the 
intermittent storms , each with the recorded rainfall 
intensity hyetograph . 



Chapter VI 

PROBABILITY DENSITIES OF STORM PRECIPITATION 

6.1 The func-
tion, X~, is defined as 

the total precipitation for ~ storms, in a sequence 
of storms. The probabili t y density function of Xv i s 

derived in Chapter I I and presented by eq. (2 .52). 1ne 
integral in that equation for x

0 
= o, 

{6.1) 

represents the average number of storms necessary t o 
produce the precipitation runount X. The question 
arises of how A2 shoul d be determined; by the use of 

v storms , which are close to the number· nx of storms 

which produce the precipitation amount X, or by any 
other value v . Four values of v were used i n the 
previous chapter for the computation of A2. 

For all pract ical purposes and for a r elatively 
smal l value of X, A2{o,x) of eq . (6 .1) is A2X. For a 

given time position, A2 can be considered a constant. 

Therefore, A2 is proportional t o X. In that case, 

eq . (2.52) is a gamma distribution. The best estimate 
of x2, as discussed in Chapter V, should be used in 

computing the integral of eq. (6 .1) for a given time 
position within the year. 

The ot her alternative in computing x2 i s to always 

use v storms , with v a number close to nx' when­

ever the probability density function of a given Xv 

is investigated as in Figs. S. l through 5. 7 This 
second al t ernati ve is used for the comparison of the 
theoretical probability density functions of Xv, 

gi ven by eq . (2 .52) , with the empirical frequency den­
sity curves of the four precipitation series, described 
in Chapter III . 

6.2 Computations of probability density functions 
of st orm precipitation . Distributions of .the total 
pr ecipitat ion amounts Xv , for v = 1, 2, 3 and 15, are 

studi.ed for storms defined as each rainy day, by using 
eq . (2 . 52) and Az values of the three examples (Durango, 

Fort Collins and Austin) as given by Figs . 5 .1 , 5. 3 
and 5. 5 . These investigations are carried out for the 
four t ime positions of the year : (1) J anuary 1; (2) 
April 1; (3) July 1, and (4) October 1, as the repre­
sentative dates of four annual s easons . In summary , 
f or t he first definition of storms, f or t he three 
exrunples of series of daily precipitation at Durango, 
Fort Collins and Austin, and for t he above f our 
seasons of t he year , the theoretical probability den­
sity functions are determined for X~ , 1o1ith f our cases 

v = 1, 2, 3 and 15. The >. 2 values used are t he com­

puted values of ;._ ~ , of Figs . 5. 1, 5 .3, and 5. 5, and not 

t he values of the fi t ted periodi c component. 
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For a stronger test of how the theoretical proba­
bility density functions fit the frequency density 
curves, t he use of A2 values from the fitted periodic 

components should be a bett er approach to use because 
it partly avoids the sampling fluctuations in A

2
• 

The above four time positions are based on the 
assumption that the nv storms , which produce the total 

pr ecipi tation runount Xv, are centered around the first 

day of January , April, July and October, respectively . 
The values A2 at those dates ar e used in the computation 

of av(x) of eq. (2 .52) which is the probability density 

function of X . 
v 

Similarly as for t he total precipitation amount 
Xv of rainy days, ~oo·i t h each rainy day consi dered as a 

storm, the probablit y density functions are determined 
f or Xv of v st orms, with storms defined as uni nter-

r upted sequences of rainy days, or of rainy hours in 
the case of Ames Station, with v = 1, 2, 3 and 10, and for 
January 1, April 1, July 1 and October 1, respectivel y . 
These four dates r epresent in general lines t he f our 
annual seasons . 

6.3 Computations of frequency density curves of 
storm precipitation . Frequency density curves of the 
total precipitation Xv are det ermi ned for t he foll.owing 

cases: 

(1) For rainy days, each considered as a storm, 
for v = 1, 2, 3 and 15, f or the above four time 
positions, designated as Season-1, Season- 2, Season-3 
and Season-4 in all figures, and for t he three exampl es 
of Durango, Fort Collins and Aus t in daily precipitation 
series. 

(2) For storms, defined as uninterrupted sequences 
of rainy days or rainy hours, whichever is rel evant, 
for v = 1, 2, 3 and 10, for the same abovo four time 
positions , and for t he four examples of the Durango, 
Fort Col l ins, Austin and Ames precipitat ion series . 

For the firs t definit i on of storms, Figs. 6 . 1, 
6 .3, and 6 .5 each give these 16 empirical f requency 
density curves of Xv (the four values of v = 1, 2, 3, 

15, and each of them for the four seasons). For t he 
second definition of storms, Figs . 6. 2, 6 .4 , 6 . 6, and 
6 . 7, each give these 16 frequency density curves of Xv 

(the four values of v = 1, 2, 3, 10, and each of t~em 
for the four seasons) . 

6 .4 Comparison of theoretical probability density 
functions with the empirical frequency density curves 
of storm precipitation . This comparison is given in 
Figs . 6 . 1 through 6. 7, i n which t he sol id lines refer 
to the computed frequency density curves , 1;hile dashed 
lines. refer to t he theoretical probability densi t r 
functions . 

It is usually customary to compar e the theoretical 
probabi l ity distributions with t he empirical cummulati ve 
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frequency distributions, r ather than to compar e t he 
density funct ions wit h the frequency density curves. 
The fact is t hat the comparison of distribution l ooks 
better to an eye, than .t he comparison of t heir density 
curves. This can be seen best by comparing the graphs 
of figures in this chapter, in which case t he density 
curves are compared with the graphs of figures in the 
fo l lowing chapt er s where distributions are compared . 

The eye inference is often misl eadi ng and un­
avoidably r epresent s a subjective decision. A compari­
son of two curves , one theoretical and another empirica~ 
may l ook as good t o one person and very bad to another . 
The objective stat istical inference by using the 
parameter s and t ests of hypotheses is the only proper 
way of comparing t heoretical and empirica l curves. 
Because readers are often accustomed to drawing their 
own conclusions , the graphical presentation is given 
in this paper, rather than the tables of chi- square or 
any other statistic, as the results of statist ical in­
ference test s . As mentioned in Chapter I I I , this is 
not an exhaus tive study of a lar ge number of stati ons , 
with a stat istical anal ysis performed of how t he var i­
ous theoretical distribution functions of precipitation 
stochastic process fit the empirical dist ributions . It 
is rather a devel opment of methodology, with t he four 
examples used to ill ustrate its potential usefulness . 
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Figures 6 . 1 and 6 . 2 refer to Durango, Fig . ·6. 3 
and 6.4 t o For t Collins, and Figs. 6.5 and 6 .6 to Austin 
daily precipitation series for each of the two defini­
t ions of storms, r espectively . As the number of years 
of data is 71 for Durango, 69 for Fort Coll ins, and 
70 for Austin , t hose are also the sampl e sizes of the 
empirical frequency density cur ves (soli d lines) of 
Figs. 6 .1 - 6 .6. Differ ences between t he theoretical 
probabil i t y densit ies and t he empirical frequency den­
sities are smaller for Durango and Fort Collins t han 
for Aust in. Figure 6.7 refers to Ames hourly precipi­
tation series . The sample size is 18 years only. This 
smal l sampl e explains why differences between the 
theoretical probabil ity densities and the empirical 
frequency densities are much greater for t his station 
t han for t he other three . The use of hourly dat a in 
the case of the Ames Station may further explain why 
these differences are so large. 

In summary, t he gamma distribution of eq. (2 . 52), 
wi t h n

2
(o,x) of eq . (6 .1) assumed to be proportional 

to X for a given A2 and a given position in time, 

seems to well fit t he empirical distributions of the 
storm precipitation amounts. 



Chapter VII 

PROBABI LITY DISTRIBUTIONS OF TIME OCCURRENCE OF STO~G 

7.1 Definition of time occurrence of storms. If 
a storm is defined as a rainy day or a rainy hour, the 
lapse time from the beginning of an interval to that 
rainy day or rainy hour is its time occurrence. If a 
storm is defined as uninterrupted sequence of rainy 
days or rainy hours, then the l apse time from the begin­
ning of an interval to the last rainy day or last rainy 
hour of that sequence is its time occurrence. If t 

0 

stands for the time when the observation begins, then 
'v denotes the end of v-th storm. The difference 

'v - t
0 

is called the lapse time of the v-th storm. 
For t 0 = o, <v is the lapse time. 

The probability density function of 'v is given 

by eq. (2.48). The following integral represents the 
average number of lapsed times in (t

0
,t] 

(7 .1) 

and it is A
1
(t-t

0
) only if Al is a constant with time. 

7.2 Computation of theoretical probability dis­
tributions of lapse time, T • Assuming that t is v 0 
defined by dates of the year, in the examples of this 
study, four values of t

0 
are taken as four seasons: 

January 1 (Season-1) , April 1 (Season-2), July 1 
{Season-3) and October 1 (Season-4). Then for any 
value 'v t, the various terms of eq. 2. 48 are deter-

mined from A
1
- time functions, as computed for four 

examples and presented in Chapter IV. The computed Al 

values 'are used rather than their values from the 
fitted periodic components. This latter case should 
be used whenever some sampling variations in Al should 
be avoided. . 

The term A1(t) in eq. (2.48) is the computed 1 
value at the time t. The term in eq. (2 . 48), given 
bye~. (7.1), is the integral from the beginning of 
the above dates and various values of t. This pro­
cedure is used for v = 1, 2, 3 and 15 for the first 
definition and for v • 1, 2, 3 and 10 for the second 
definition of storms. 

The theoretical probability distribution functions 
(as integrals of eq. (2 .48)) are given for the four 
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examples of precipitation data (Dur ango, Fort Collins, 
Austin and Ames) as light solid lines in Figs. 7. 1 
through 7.7 as explained in the captions of these 
figures. 

7.3 Computation of empirical frequency distri­
butions of lapse time, 'v· Frequency distributions of 

lapse time 'v , given in all figures as heavy solid 

lines, are determined for the fol lowing cases: 

(1) For rainy days, each considered as a 
storm, for v • 1, 2, 3 and 15, and for the above four 
time positions t

0
, designated as Season-1, Season-2, 

Season-3, and Season-6 in all figures , and for the 
three examples of Durango, Fort Collins, and Austin 
daily precipitation series . 

(2) For storms , defined as uninterrupted se­
quences of rainy days or rainy hours, whichever is 
relevant, for v • 1, 2, 3 and 10, and for the same 
above four positions of t

0
, and for the four examples 

of Durango , Fort Collins, Austin, and Ames precipitation 
series. 

For the first definition of storms, Figs. 7.1 , 7 .3, 
and 7.5 each give these 16 empirical f requency distri­
butions of 'v (the four values of v = 1, 2, 3 and 15, 

and each of them for the four seasons). For the second 
definition of storms, Figs . 7.2, 7.4, 7.6, and 7.7 each 
give these 16 empirical frequency distributions of 'v 
(the four values of v • 1, 2, 3 and 10, and each of them 
for the four seasons). 

7.4 Comparison of theoretical probability distri­
butions and empirical frequency distributions of lapse 
time, 'v· This comparison in Figs. 7.1 through 7. 7 

shows a good closeness of theoretical and empirical 
curves, though this is not studied by tests of appropriate 
statistics of goodnesss of fit . The exception is Fig.· 
7.7, for the hourly precipitation data at Ames, because 
the sample is small , only 18 years. 

In conclusion, eq. (2 .48) gives a good distri bution 
of 'v• provided A1 is well estimated as a function of 

time. The values of Al from the periodic component 

should be used instead of the computed values of A1. 
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FIG. 7.1 COIG'AAISOII OF THE THEORETICAL PROBABILITY OISTRI6UTIOII (liGHT SOliD LINES) AltO Tl1E EIIPIRICAI. FREQUENCY OISTRIBIITIONS (I!EAYY SOLID liNES) OF THE 
STORK LAPS< TIH£, ' , FOR THE FIRST RAINY DAY (RAINFAll, 1-ST RAIN, FIRST COI.UM~). FOR THE FIRST 00 RAINY DAYS (RAINFALL, Z-HO RAIN, SECOND 

COLUKN) , FOR THE FIRST THREE RAINY DAYS (RAINFALL, 3-RD RAIN, THI RO COLUM/1) , AND FOR THE FIRST Fl FTEEN RAINY DAYS (RAINFALL , 15-Tl1 RAIN, FOURTH 
COLUMII) , AND EACH OF THEM FOR THE FOUR SEASONS (OR TIME POSITJONS): JANUARY 1 (SEASON-I, FIRST ROW) , APRIL 1 (SEASOM- 2, SECOND ROW), JULY 1 
{SEASON-3, THI RD ROW) , A.NO OCTOBER 1 (SEA.SON-4 , FOURTH ROW) OF DURANGO DAILY PRECIPITATION SERIES , WITH STORKS OEFINEO AS EACH RAINY DAY. 
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SEASON1 

.os .to .115 .2'G- .2'5 . 3t.l . -,s . .:a .~ .so 
DISTRIBJTICN rtN:TICN ~ STCR1 

FIG. 7 .2 COMPARISON Of THE THEORETICAL PROBABIL ITY OISTRI BUTIOII (LIGHT SOLID LINES) AND THE EliPiRICAL FREQUENCY OISTR!BUT!OHS {HEAVY SOLID LINES) Of THE 
STOIIM LAPSE TIME, ' u• FOR THE FIRST STOIIM (RAINFALL, 1-ST STOIIM, FIRST COLUMN), FOR THE f iRST TWO STORiiS (RAINFALL, 2-ND STORM, SECOND COLUM/1), 

f OR TK<: FIRST THREE STOIIMS (RAI NFALL , 3-RO STORM , Tii!RO COLUMN) , ANO THE FIRST TEH STOIIMS (RAH~FALL. 10-TH STOR:i , FOURTH COLU~ ) .AHO EACH OF 
THEM FOR THE FOUR SEASONS (OR ilME POSHIONS): JANUARY 1 (SEASON-! , FIRST RO'~) . APRIL 1 {SEASON-2 , SECOND ROW). JULY 1 (SEASON- 3 , THI RD ROW), 
AND OCTOBER l (SEASDN- 4, FOURTH ROW) OF DURANGO DAILY PRECIPITATIOII SERIES, WITH STORMS OH!:IEO AS UNINTERRUPTED SEQUENCES OF RAINY DAYS. 
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fiG. 7.3 COHPAAISON OF TME TMEORETICAl PROBABILITY DISTRIBUTIOH (LIGHT SOLID LINES) AND THE £l'J>IRICAI. FREQIJENCY OISTRISIJTIONS (HEAVY SOLID liNES) OF THE 
STDRIILAPSE TIME, 'v' FOR THE FIRST AAIIIY DAY (RAINFALL, 1-ST RAIN, FIRST COLUMN), FOR THE fiRST 'NO RAINY DAYS (RAINFALL, 2-ND RAIN, SECOND 
COLUMN), FOR THE FIRST THREE RAINY DAYS (RAINFALL, 3· RD RAIN, THIRD COLl.tiN), AND FOR THE FIRST FIFTEEN RAINY DAYS (RAINFALL, 15- TH RAIN, FOURTH 
COLUMN) , AND £ACH Of THEM fOR THE FOUR SEASONS (OR TIME POSITIOI!S): JANUARY 1 (SEASOH-1, FIRST ROW), APRIL 1 (SEASON·2, SECOND ROW). JULY 1 
(SEAS0~·3, THIRD ROW), AND OCTOBER 1 (SEASOII-4, FOURTH ROW) Of FORT COLLINS DAILY PRECIPITATION SERIES , WITH STORMS DEFINED AS EACH RAINY OAY. 
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FIG. 7.4 COI~PARISOtl Of THE THEORETICAL PROBABILITY DISTRIBUTION (LIGHT SOLID LINES) AIID r HE EMPIRICAL FREQUENCY DISTRIBUTIONS (HEAVY SOLID LINES) OF THE 
STOR1'1 LAPSE Tli~E. t , FOR THE FIRST STORM (RAINFALL, 1-ST STORM, fiRST COLU11N). FOR THE FIRST T\11) STOR.~S (RAIKFALL , 2-NO STORM, SECOIIO COLU~Ji). 
FOR THE Fl RST THREE \ TORI1S (RAINFALL , 3-RO STORM, THIRD COLUMN) , AND THE msT H N STORMS (RAINFALL , 10- TH STORI1, FOURTH COLLC-IN), AND EACH OF 
THb~ fOR THE FOUR SEASONS (OR TIME POSITIONS): JANUARY 1 (SEASON- I. FIRST ROW). APRIL 1 (SEASON-2 , SECOND ROW) , J ULY 1 (SEASON-3, THIRD ROW), 
AIIO OCTOBER l (SEASON-4, FOURTH ROW) OF FORT COLLINS llAILY PRECIPITATION SERIES , WITH STORMS OEf!IIED AS UII!NTERRUPiED SEQUENCES OF RAINY DAYS. 
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FIG. 7.5 COHPARISON OF THE THEORCTICA~ PROBABILITY O!STP.IBUTION (LIGHT SOLID LINES ) AND TH~ HIPIRICAL FREQULifCY DISTRIBUTIONS (HEAVY SOLID LINES) OF THE 
STORM LAPSE TIME , , , FOR THE FIRST RAINY DAY (RAINFALL, 1- ST RAm, FIRST COLUMN), FOR THE i'IRST Til) RAINY DAYS (RAINFALL , Z- ND RAIN, SECOIIO 

COLUM~) . FOR THE riRSl THREE RAINY CAYS (RAINFA~~ . 3- RD RAIN, THIRD C1>LUKH ) , AND FOR THE FIRST FIFTEEN RAINY DAYS (RAI NFALL, 15-TH RAIN, FOURTH 
CDLUM~), AND EACH OF T' IEM FOR THE FOUR SEASONS (OR TIME POSITIONS): JANUARY 1 (SEASON-1 , FIRST ROW), APRIL 1 (SEASON-2, SECOND RO\i) , JULY 1 
(SEASDN-3, THIRD RO'~) . AND OCTOBER 1 (SEASON-4 , FOl'RTH ROW) OF AUSTIN DAILY PRECIPITATION SERIES, WITH STORMS DEFINED AS EACH RAINY DAY. 
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F!G. 7.6 COMPARISON Of THE THEORETICAL PROBABILITY DISTRIBIJTION (LIGHT SOLiD LINES) AND THE EMPIRICAL FREQUENCY DISTRI BUTIONS (HEAVY SOLID LINES) OF THE 
STORM LAPSE TIME, r

0
, FOR THE FIRST STORM (RAINFALL, 1-ST STORM, FIRST COLUMN), FOR THE FIRST TW() STORMS (RAINFALL, 2-ND STORM, SECOND COLUKII), 

FOR THE FIRST THREE STORMS (RAINFALL, 3- RO STORM, THIRD COL\R'IN ), AND THE FIRST TEN STORMS (RAINFALL, 10-TH STORM, FOURTH COLUM.~) . AND EACH OF 
TfiEM FOR THE FOUR SEASONS (OR TIME POSITIONS): JANUARY 1 (SEASON-1 , FIRST ROW). APRI L 1 (SEAS!m-2, SECOND ROW), JULY 1 (SEASON- 3 , THIRD ROW), 
ANO OCTOBER 1 (SEASON-4, FOURTH ROW) OF AUSTIN DAlLY PRECIPITATION SERIES, WITH STORMS DEFINED AS UNINTERRUPTED SEQUENCES Of RAINY DAYS. 
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FIG. 7.7 COMPARISON OF THE THEORCTICAL PROBABILITY OISTRIBUiiOH (LIGHT SOLID LINES) AND THE 04PIRICAL FREQUENCY DISTRIBUTIONS (HEAVY SOLID LINES) Or THE 
STORM LAPSE TIME,, , FOR THE FIRST STORM (RAINFALL , 1-ST STORM , FIRST COlUt\N) , FOR THE fiRST TWO STORI-IS (RAINFALl , 2-ND STORM, SECOND COI.Ut\N) , 

FOR THE r!RST THREEvSTORMS (RAINFALL, 3· RD STOR.'I , THIRD COLUMN), AllO THE FIRST TEN STORMS (RAINFALL, 10-TH STORM , FOURTH COLUMN), AND EACH OF 
THEM FOR THE FOUR SEASONS (OR T!HE POSITIONS) : JANUARY 1 (SEASOH-1 , FIRST ROW), APRil 1 (SEASON-2 , SECOI~O ROW), JULY 1 (SEASOII-3, THIRD ROW) , 
NlO OCTOBER 1 ( SEASON-4, FOURTH ROW) CF AllES HOURLY PRECI PITATION SERIES , WITH STORMS OUI N£0 AS UIHNTERRUPTEO SEQUENCES OF RAINY HOURS. 
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Chapter VI II 

DISCUSSIONS OF RESULTS AND CONCLUSIONS 

8. 1 Discussion of ,results. This study refers to 
the int ermittent process of precipitation storms, with 
continuous precipitation intensities ~t > o whenever 

it rains or snows, at a given point. Such a series, 
when available, gives maximum information on the pre­
cipitat ion process at a given precipitation gauging 
station. However, the precipitation time series of 
very small time units, say 10 minutes or less, are 
rarely available, and the instantaneous intensity as a 
function of time during storms is even more rarely 
available. 

The original design of precipitation observation, 
the development of inst rumentation, and the hydro­
meteorological services for precipitation observation 
have been oriented to produce discrete time series with 
precipitation amounts referred to calendar time units. 
The precipitation data is available, in general, either 
as data referring to the hour or multiples of an hour, 
to days or multiples of a day, to months or multiples 
of a month, or to the year. Any approximation of a 
continuous time series by a discrete series means a 
loss of information. This loss increase s with an in­
crease of the time interval over which the precipitation 
is integrated or averaged . Therefore, the data cur­
rently available on precipitation always has a lesser 
or greater loss of information whon compared with the 
continuous intensity series of intermittent process of 
storms . 

The stochastic process of precipitation is treated 
without any basic assumption about the character of 
this process from the probabilistic point of view. How­
ever, two phenomenological basic hypotheses, based on 
experience, are made. First, the process is intermit­
tent, with con·tinuous values ( t > o whenever it rains 

or snows . Second, the process is periodic , with the 
year as the basic period. 

The mathematical and mathematical physical descrip­
tion of the stochastic process of precipitation can be 
treated by two approaches. The first approach is when 
the multivariate distribution of the process is found 
and is mathematically expressed. Then it is descri bed. 
This approach poses several problems. However, it is 
not a difficult task to accomplish, if t he process is 
made discrete with sufficiently long time intervals of 
discrete values. The second approach is to select 
various characteristics of the process as its descrip­
tors. These characteristics being functions of the 
basic process and also random variables describe the 
process . The problem at hand determines which charac­
teristics should be selected for this description. Six 
such characteristics being the random variables of the 
process have been discussed in the previous text. 

Distributions of selected character ist ics treated 
as random variables can be developed mat hematically 
under a minimum of basic phenomological assumptions. 
The probability distributions of six characteristics 

studied are functions of two basic parameters which are 
deterministic in character: x1, as the density of storms 

in time , and x2, as t he yield character isti c of storms . 

They are constants if a process is stationary. In the 
pr ocess investigated in this study they are determinis­
tic and periodic in the four examples. 

It should be stressed that many other character­
istics of the basic stochastic process of storms can 
be found to be probabilistic in nature with their dis­
t r ibutions dependent on x1 and x2 parameters, and func-

tions of time. 

8.2 Conclusions . The following conclusions are 
drawn from this study: 

1. The parameters of Al and x2 are deterministic 

periodic functions of time, and they follow general 
periodic patterns of t he basic parameters , such as the 
interval means and the interval standard deviations. 
The density of precipitation, defined as the mean pre­
cipitation of an interval divided by the interval 
length, is the ratio x1;x2. 

2. The use of x1 and x2 gives a better descrip­

tion of the character of preci pitation (with x1 the 

number of storms in a time unit, and A2 the inverse of 

the average yield per storm at a given time of the 
year) than the means and standard deviations of indi­
vidual intervals. 

3. The use of hourly and daily data for the defi­
nition of storms either over-estimates or under-esti­
mates the number of storms per time interval. This 
indirectly affects the estimates of time duration of 
storms. 

4. The number of storms in a time interval is 
Poisson distributed, if storms are properly defined. 

5. The empirical distributions of the total pre­
cipitation for a given number of storms closely follows 
the theoretical distribution function derived in this 
paper . 

6 . The observed l apse time, for the given refer­
ence time of the year, of the first, second, or any 
other storm counted from that reference time, closely 
follo\6 functions developed in this analysis. 
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7. The us e of precipi tation series in the form 
of hourly or daily values, or values of similar units, 
represents a loss of information about storms. The 
use of a much smaller time unit with discrete precipi­
tation values or the use of continuous intensities 
during the storms may be important in the case of esti­
mates relating to such problems as floods from small 
watersheds. 
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APPENDIX A 

Proof of 2.21: 

By the defini tion (see 2.9) 

t 't 
EJ. 

0 
• { TJ. < t < T } j+1 

It i s easy to see that it can be written as follows: 

or 

t 't 
E.o 

J 

t 't 
P(E . 0 

) • P{T. ~ t} - P{T. l < t} 
J J J+ -

Taking the sum from j = 0 to j = v - 1 of the left and 
right side of the last equati on,we have 

v-1 v-1 v-1 
l: 

j =o 

t ,t 
P(E . 0 

) 
J 

l: P{TJ. ~ t } - l: P{TJ.+l ~ t } 
j •o j=l 

Since 

D P{T < t } P{T < t } 
o- v-

and P{T < t } 
v-

assertion follows. 

Proof of 2.22: 

F v(tJ, the 

Suppose that the following conditions are satisfied 

(a) 

(b) 

lim 
t.t-+o 

lim 
6t-+o 

l: 
T=2 

t.t 

I t ,t 
P(Et,t+t.t E o } 

0 

1 v 
t.t .. :~_ 1 (t,v) 

t > t 
- 0 

t > t 
- 0 

v = 1, 2, ... , then (2 .22) follows . 

Let us firs t consider the following relation: 

v-1 
Fv(t+6t) a 1 - t 

j•o 

t ,t+t.t 
P(E. 0 

) 
J 

v-1 j t , t 
1 - l: l: P(E .o (\ Et,t+t.t) 

j•o r =o J-r r 

then on the basis of condition (a) we have 
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v-1 
Fv(t+t.t ) • 1 - t 

j=o 

v-1 t , t 
l: P(E.ol () Et,t+t.t) + o(t.t) 

J- 1 j .. l 

Hence 

dF (t) v-1 t ,t t , t +t.t t 't _v __ t.t 
l: P(E .0 E nE. o > dt 

j •o J 0 J 

v- 2 t , t 
E~,t+t.t) + o(t.t) l: P(E. 0 n 

j ~:o J 

By virtue of the following relation 

It follows 

dFV(t ) v- 1 t ,t 
(Et,t+t.t) c] dt 6t l: P[E .0 

() 

j .. o J 0 

v-2 t 't 
E~,t+t.t) + o(t.t) l: P(E.0 

(\ 

j • o J 

t 1 t A 

• P(E 0 (\ Et,t+ .. t) + o(t.t) 
v-1 1 

which proves the assertion. 

Proof of ( 2 .33) and (2.34) is identical to the 
proof of (2.21) and (2.22), respectively. 

Proof of 2. 43: 

Let n(t
0
,t) stand for thb number of storms in 

(t
0
,t), i.e. 

t ,t 
E o 

then 

P{n(t ,t) • v} 
0 v 

n(t
0
,t+6t) • n(t

0
, t) + n(t , t+t.t) 

Taking the mathematical expectation of the left and 
right side of the relation, we obtain 

E{n(t
0

,t+t.t) • E{n(t
0
,t) } + E{n(t,t+t.t)} 

and the assertion holds. 

In a similar way one can prove (2 . 44). 



APPENDIX B 

Proof of (2 . 48): 

&y virtue of (2.32) we have 

"" t t 1 
E(T) = _!__() f t A1(s) exp{-J A1(s)ds)(/ A

1
(s)ds)v- dt 

v rv t t t 
0 0 0 

After partial of integration , it follows that 

.. t t 

E(Tv) = r (~) f exp{-/ A1(s)ds}(/ A1(s)ds)v-ldt+E(T ) 
t t t v-1 

0 0 0 

Hence 

1 .. t v-1 
E(tv) - E(tv_1) = r(v) { exp{ -j A1(s)ds}(! A1 (s)ds) dt 

. 0 0 

Similarly 

00 t 
E(t )-E(t _ 1)~ ,-t---() f A1(t)exp{-j A1(s)ds} 

v v ~1 v t t 
0 . 0 

Therefore 

.!_ < E(t ) - E(T.,_
1

) ~ f­
..- - v v ~1 
"1 

v v ~ l 
l: .!._ < E [E(t.) - E(T._1) J ~ ... A 

- . J J i • l -1 j=l Al l=V 

Since E(t
0

) = o we have 

~ < E(t ) < v 
- - v - !.1 AI 

and t he asse'rtion holds. 

In the same way, one can prove (2 .59) . 
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APPENDIX C 

Proof of (2 .69): 

when EP{xt ~ x jn(t
0
,t)} denotes the condit ional proba­

bility with r espect to the random variable n(t
0
,t) . 

Since 

we have 

n(t
0
,t) 

I: zk + xo 
k=o 

., n(t
0

, t) 

l: ft t P{ l: Zk ~X 
v=o E o ' k=o 

.. 
r 

v=o 

v 

v 
ft t P{ l: Zk ~X 

o' k=o 
E 

v 

- X lnCt ,t)}dP 
0 0 

t • t 
because on the set Ev0 the random variable n(t

0
,t) • 

v . After integration 

F t (x) 

Since 

t • t t • t 
l: P{X < x iE 0 

} P(E 0 
) v - v v 

{X < x} v-

oo X ,x 
UG .0 

j=v J 

Ft(x) 
00 ~ X ,X t ,t 
·r P { U G . o (\ E o } 
v=o i •v J 11 

00 X ,X t , t 
l: P(G . 0 n E 

0 
) 

v=o i=v 1 11 

Proof of (2 .70): 
X ,X t , t . d 

If one assumes that G.o and Eo are 1n ependent 
l \/ 

events for all i ~ 0,1, ... and v = o, l , ... ,then 

F t (x) 

If in (2 . 32) and 2. 41) we set A1(t) = A1 = const. and 

A2(x) A2 = const . and t
0 

x
0 

o, we obtain 

v t -A
1 
t (A

1 
t) 

P(E
0

' ) = e - -v v ! 

Therefore 

Ft(x) = I: r 
v=o i=v 

-(A
1
t+A

2
x) oo 00 (A

1
t)v (A2x)i 

e r I: ---v! ---rr-
v•o i •v 

and the assertion holds . 
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Key Words: Hydrology, Precipitation, Sto~ . Time Series, Stochastic 
Processes in Hydrology, Precipitation Intensities 

Abstract: The continuous process of precipitation intensities, 
l;t !.. o, is investigated through the study of probability distribu-

tions of six descriptors: number of storms in an inverval of time, 
number of storms producing a given amount of precipitation, lapse 
time between a reference time and the end of a storm, the total 
precipitation of v storms, the precipitation of v-th storm, and the 
total precipitation in a time interval. The parameters A

1
, as the 

number of storms per time unit, and A2 as the inverse of the average 

yield per storm, are derived as periodic functions of time inside the 
year. The comparison of derived theoretical probability distributions, 
which are functions of Al or A2 , and the observed frequency distri-

butions for the four examples used in the study, is shown to be good 
in the light of i nevitable sampling errors. 
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