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ABSTRACT

The stochastic process of precipitation intensity, & > 0, as a time series at a given

t
precipitation station, is presented. Six random variables are used as descriptors of the
gt-process: (1) the number of storms in a time interval; (2) the maximum number of storms
after a reference time, with their total precipitation not exceeding a given value; (3)
the lapse time between a reference time and the end of a storm; (4) the total precipitation
for v storms; (5) the total precipitation of the v-th storm; and (6) the total precipitation
in a given interval of time.

Two parameters are shown to be important in deriving the probability distributions of the
above six descriptors: Al,the average number of storms per unit time interval (in the text

designated as the density of storms in time); and ),, the yield characteristic of storms (in the

27
text defined as the inverse of the average water yield per storm). Al and 12 are periodic
functions of time, with the year as the period, as illustrated with four examples (Durango,
Colorado; Fort Collins, Colorado; Austin, Texas and Ames, Iowa precipitation time series,

the first three using daily precipitation values and the last one hourly values).

Two definitions of storms have been imposed by the data available: (1) every rainy day or
every rainy hour is considered as a storm; and (2) the uninterrupted sequence of rainy days or
rainy hours is considered as a storm. In studying A= and A,-parameters, it was shown for
rainy days that the first definition gives a larger number and the second definition a smaller
number of storms per time interval than the expected true number of storms.

The number of storms in an interval is Poisson-distributed, with the parameter in that
distribution being the integral of Al-parameter over that interval.

The comparison of the theoretical probability density function for the total precipitation
of v storms (v = 1, 2, 3 and 15 in the first definition and v = 1, 2, 3 and 10 in the second
definition) and their empirical frequency density curves shows a good agreement for the four
examples investigated, considering the inevitable sampling errors.

The comparison of the theoretical probability distribution functions of the lapse time
for vw-th storm (v = 1, 2, 3 and 15 in the first definition, and v = 1, 2, 3 and 10 in the second
definition of storms) and their empirical frequency distribution curves show a good agreement

for the four examples investigated.

vii



STOCHASTIC PROCESS OF PRECIPITATION

by

P, Todorovic* and V. Yevjevich**

Chapter I

INTRODUCTION

1.1 General character of hydrologic time series.
The analysis of hydrologic time series and other hydro-
logic sequences by the appropriate mathematical models,
that describe either the patterns in sequence of a river
flow or precipitation or their spacial distributions,
represent an important step in predicting characteris-
tics of future water supply and planning of water
resource projects. Among the various concepts that
have been used in the analysis of hydrologic processes
one can distinguish two basically different approaches,
deterministic and probabilistic. In the following, two
examples are outlined that point out the distinction
between these two conceptual approaches.

A hydrologic (or generally speaking, a physical)
phenomenon is subject to some laws that govern its
evolution. A physical phenomenon is assumed to be a
deterministic one if, on the basis of the present state,
the future characteristics of the phenomenon can be pre-
dicted with certainty (are sure outcomes). For instance,
the Newton laws of motions are deterministic in the
sense that on the basis of the given present state of a
moving body the future states are uniquely determined.
Similarly, as an example in hydrology, the outflow
hydrograph from an impervious surface is a determinis-
tic process, if the rainfall input is assumed to be
known as its distribution over the surface and in a
given time interval, and the evaporation is negligible.

The laws of random phenomena, for example, those
that govern the evolution of rainfall phenomenon in
time, are stochastic in the sense that on the basis of
the present state only probabilities of the future out-
comes may be determined. For the precipitation random
process, if Ne stands for the number of bursts or

storms in the interval of time (o,t), which gives the
present state of the phenomenon, the number of bursts

or storms nt,t+&t in the interval of time (t,t+At),

can never be predicted with certainty for any 4t > 0.

5 : red
In other words, nt,t+&t is a random variable define

over some probability space (f,0f,P) for every At > 0.

Since nt,t+at is a discrete random variable, only
probabilities
- - 3 -
PvEt:AtJ = P{nt,t+ﬂt =v}, v=20,1, 2, s

o

where I ﬂ;t,at) =1 for all t > o and At > o, may
u=0
be determined.

This study of precipitation phenomenon follows in
principle the probabilistic approach. With respect to
the nature of the phenomenon, this approach is the
most logical for the analysis and prediction of the
future characteristics of the time series of precipi-
tation. To summarize, the precipitation phenomenon is
considered from the aspect of the theory of stochastic
processes. A stochastic process is a mathematical
abstraction of an empirical process, which in this case
is a physical phenomenon evolving in time and governed
by probabilistic laws. A stochastic process is a random
variable xt, that depends on time t, or a family of

random variables, one for each instant of time, t,
defined on a probability space.

1.2 Structure of hydrologic time series. Past
experience with various studies of time series of
hydrologic phenomena, such as evaporation, runoff,
precipitation, and others has pointed to their three
basic characteristics expressed in the form of time
series components:

(a) The secular or long term variations conceived
as fluctuations of the basic characteristics of time
series (distribution function, mathematical expectation,
variance, extreme values, etc.) in function of time,
either as the regular persistence of cyclicity and
trends, or as unspecified changes of non-stationary
character. These variations are often referred to as
""elimatic changes" or "secular components of geophysical
time processes."

(b) The periodic component related to the
astronomical cycle of the day, or the periodic com-
ponent related to astronomical cycle of the year, are
usually defined as 'periodic movements."

(¢) The stochastic components that are the
results of the probabilistic nature of the phenomena
considered are frequently called "stochastic variations
or fluctuations."

*Associate Professor, Civil Engineering Department, Colorado State University, Fort Collins, Colorado.

**professor of Civil Engineering and Professor-in-Charge of Hydrology Program, Civil Engineering Department,

Colorado State University, Fort Collins, Colorado.



Among the most controversial questions in the
current hydrologicinvestigations is the problem of the
existence of secular components, that is the existence
of periodicity, trends or other non-stationarity in the
probability structure of hydrologic time series of
annual values, beyond the periodicity of the year.
Non-stationarity in secular components may be only in
some characteristic parameters of the series, such as
the trend in the mathematical expectation, in the
variance, covariance, or in the higher moments. In
other words, there is the question whether or not the
"secular components' or 'secular non-stationarity" do
really exist in time series.

Some studies do not support the concept of non-
stationarity in hydrologic series of annual values.
At least the most reliable information available in
the last 100-150 years of thousands of annual precipi-
tation and annual runoff series [1] does not show sig-
nificant trends and periodicities. However, this
subject is still not closed and will likely be treated
often in the future as more data become available and
as better methods for the discrimination and testing
of various properties of time series are developed.
This problem of eventual long-term non-stationarity
of time series is not treated in this study. It is
assumed the present-day techniques of time series
analysis do not, and eventually cannot, discern any
significant non-stationarity in the series of annual
values of basic hydrologic phenomena. In other words,
for a couple of centuries (l-Z preceding and 1-2 next
centuries), it is assumed for the purposes of this
study that no secular component of non-stationary char-
acter is present in the series of annual values of natu-
ral hydrologic processes.

The time series of variables which refer to any
interval, smaller than a year (seasonal, monthly, daily,
hourly, and so forth) and the continuous time series of
intensity of a hydrologic phenomenon exhibit both
periodic components and stochastic components. There-

fore, they are basically non-stationary time series.

With respect to the within-the-year periedicity,
it seems logical to conclude, by physical considerations
and as well as by experience, that some hydrologic time
series must have the periodical-probability structure.
At least they have periodicity in some parameters. The
probabilistic nature of hydrologic time series is a
result of mutual interactions of an immense number of
various physical causative factors. In spite of very
regular and deterministic astronomical movements, many
hydrologic time series are extremely irregular and
their behavior is unpredictable because of the dominance
of probabilistic part in the phencmenon.

1.3 Subject of this investigation., The inter-
mittent stochastic process of precipitation intensity
Et’ which is the rainfall intensity at the instant t,

is the subject matter of this investigation. The total
precipitation in a small interval of time (t,t+it) is
approximately equal to at-g, where t < 5 < t + At.

Therefore, the total precipitation xt in a time inter-
val (o,t), if this limit exists, is given by

n It
X, =1im £ £ .At, = [ £ dt ,
Fomeisl %0 * o F

(1.1)

where for all i =1, 2, ..., n, and &ti = E‘ s

(i-1)at < s; < ist . 1f Xt is a differential function

of time t, then

dxt
= e—— 112
F’1: dt ( )
where £, Tepresents a non-negative stochastic process

or a non-negative family of random variables

B 2T} (1.3)

where T is the domain of definition cf the process.
On the basis of eq. (1.7, Xt represents a stochastic
process as well. Both £e and X, are continuous pa-
rameter random processes and since Et > 0 for all
teT, it follows that sample functions of X, are non-

decreasing functions of t.

The process Et is highly intermittent because for
any time interval [tl,tZJCT, the probabilities that

£t = 0 and Et > 0 are positive, i.e.,

P{Et =0, tc[tl,tz}}> 0 and P{Et > 0, tE(tl,tZJ} > 0.,

lf(t2 - tl)a = then

P{E,t =0, ta[tl,tz)} + 0 and P{st % 0, ts(tl,tzj} + 0.

Phenomenologically speaking, {&t =0, ts(tl,tzJ}
:tzj .

words there will be no precipitation during the time
interval {tl,tz). The conditicn P{Et =0, tg(tl,tz)}+0

represents the event that gt =0 in [tl In other

if (12 - tl} + » means that the probability of the

event, that after time t. it will never rain again,
is zero. Similarly, {gt 0, ta(tl,tz)} denotes the

The
condition P{Et >0, ts(tl,t,)} + 0 if [tz - tl) o

event that during [tl,tzj it continuously rains.

means that the probability is zero that after the time

t1 it will rain continuously.

The (instantaneous) precipitation intensity £ is

rarely measured or published as such. Instead, usually
the £, process is given as integrated total precipi-

tation or as average intensities over unit time inter-
vals (10 minutes, 30 minutes, one hour, two hours,

and so on). Therefore, in practice instead of a con-
tinuous record of &y only values in a finite set of

time units are available.

Those properties of intermittent precipitation
that are connected to the stochastic process Et are

subject of this study. In other words, various char-
acteristics of rainfall that can be obtained from the
recorded precipitation data are expressed as functions
of the process Eer The areal distribution of precipi-

tation or any physical phenomenon in the atmosphere,
which affects the precipitation, are not parts of this
investigation. In the sequel, the process &t is re-

ferred to as the basic stochastic process of precipi-
tation,

1.4 Research objectives. The main objective of
the study is to present a mathematical model for




investigating those properties of precipitation that
are related to the stochastic process Ee Such proper-

ties are the number of storms in a given interval of
time, the total precipitation during the given number
of storm periods, and similar. It is a result of the
general characteristics of probability theory that these
properties of rainfall may be derived from &, -process.

In other words, and mathematically speaking, a series of
functions of random variables, defined here as functions
of Et, are considered and their probability structures

are determined as stochastic processes. Only one-
dimensional distribution functions of these functions
of random variables are subject of this study.

It should be stressed here that the study of the
T
process X, = / g ds is undertaken and not of the
0

process Et itself, The reason is it is much simpler

to study the monotonically increasing process Xt than
the basic process by

1.5 Two fundamental approaches to investigation of
hydrologic stochastic processes. The basic hydrologic
processes in time domain contain daily and within-the
year periodicities. Two fundamental approaches may be
used in these cases:

(a) A process is transformed in such a way as to
remove the periodic components, and then to investigate
the remaining stationary stochastic process. This
approach is feasible for continuous processes or those
derived processes of discrete nature which are not
intermittent, say it > 0.

(b) A process is considered as observed, with its
periodic part unseparated from the stochastic part, but
many functions of the process (derived variables) ex-
hibit the periodicity. This second approach is attrac-
tive for intermittent processes, like storm precipita-
tion, or storm flows of intermittent rivers. In this
second approach, the density of storms per unit time
interval, or the intensity of storms (storm yield) per
unit time interval, will show a periodicity, if the
density of storms and the water yield per storm are
functions of seasons. This second approach is the one
taken in this study.



CHAPTER II

THEORETICAL BACKGROUND

2.1 Definitions and notations. As was mentioned
before, the precipitation intensity £e > 0 is the basic

process of the study. It is apparent that Et = 0, when-

ever there is no precipitation, and £_ > 0 when it rains

t

or snows, If to stands for the time when observations

of the rainfall phenomenon begin, and Et is the rain-
0

fall intensity at that instant, then with respect to

the nature of precipitation, it is not possible to

predict with certainty the value of Et at any instant
of time after tyi iceu, Et is a random variable for any
B2 s For example, if an arbitrary sequence of times
tl’tz""’ tU are selected from {te,mJ, then it is not

possible to anticipate precipitation intensities at
these instants. In other words,

e s Bl hevns & (z.1)

are random variables. Since it
quence of instants from Lto,m),

is valid for any se-
it is apparent that £t

variables, or one varia-
denoted in the follow-

is an infinite family of random
ble for each tc(to,m}, which is

ing manner
4 t t } - 2—2

This family of random variables represents the basic
continueous parameter stochastic processes of this study.

Generally speaking, random variables of (2.1) have
different distribution functions, i.e.,

FtlixJ =

P{Etl < Ftﬂ[XJ = P{% & BT s

and

Ftl{XJ # thtx) Foy (2.3)

The corresponding mathematical expectations
E(g, ) = [xdF_ (x); E(g ) = [xdF, (x),
tl tl t2 t2

are different for different ty (see Fig. 1), as well,

Une can choose another sequence of instants t}, tl,...
tﬁ and determine mathematical expectations of &t,,
1

, etc. In this manner a curve is obtained,

r
= ]

b
(Fig. 1), which represents mathematical expectations,

E[atJ of the stochastic process Et‘ In a similar way

£
bt‘
n

. . 5 - .
one can obtain the variance c; of Et as a function of

i) . E(E,)
E(E;,)
£,
LI & & & & &L T 1t % !

Fig. 1 Graphical presentation of mathematical expec-
tation of random variables, Et
k

time t defined as
SR = 2
o, = Elg, - E(E)] (2.4)

If one assumes £ _ to have the periodic-probability

structure, with both E[ct) and o_ being periodic func-

t
tions of time t and with regard to the oscillation in-
side the day or inside the year, then E[gt} and Oy

follow the periodic movement of the day or the year,
respectively.

In the moment theory of stochastic processes, it
is sometimes useful, instead of the process Et’ To con-

sider its linear transformation e defined as

t}

In that case the process Ee is expressed as

E = 0.8

Cp =78 * BUED

i.e., the stochastic process §  is separated in two

i 7
components, the stochastic part, Ers and the determin-

istic parts, E(Etj and o,. It is easy to see that

E(e.) =0 and E(a%) =1, forallt2t,

)
Since no assumptions have been made about the stochastic
process ét’ nothing specific can be said about e It

may be stationary in the wide or narrow sense, or it
may be a stochastic process of any kind.

The intermittency of the precipitation intensity
process enables the application of a particular con-
ceptual structure, namely precipitation bursts or storms
as intermittent successive events in the process. A
storm is defined as continuous precipitation between



twonon-rainy intervals, even though the total amount of
precipitation and the duration of some storms may be
very small. Therefore, there is a difference between
the colloquial definition and concept of a storm, and
the definition of the storm in the probabilistic sense
of disecrete precipitation storm events. Each has a
different duration, a different total precipitation,
and a different shape of storm intensities. This
latter definition will be used in this text, while the
everyday concept of storms will be left for those storm
events which have relatively significant total precipi-
tation.

A schematic representation of a sample function of
the process {;t; t g_to} is given in Fig. 2. It is easy

to single out many characteristics of this process as
separate stochastic processes. For instance, the be-
ginning times, the centroids, the mid-points, or the
ending time of individual storm events are particular
properties of the process. Similarly, the total pre-
cipitation of each event, the total precipitation from
to to t, the duration of each event, the maximum inten-

sity of each event, etc., are stochastic processes which
depend on the basic process .. Choosing which of the

various stochastic processes, derived from gt, to study

will depend on the problem at hand. Therefore, some
arbitrary selection of random variables is made here
for the study of derived stochastic processes. For
some other processes, not studied here, it is logical
to apply derivations similar to those shown in the
following text.

“m O} T1 1 T‘U

Fig. 2 Sample function of the process ¢ ., which is a

precipitation hyetograph.

The first stochastic process derived from &, is a

S
linear functional (or linear random function) of it’
defined as

(2-6)

where s 1is a dummy integration variable, and repre-
sents the total precipitation for time t; X, is

T
total precipitation for time t and | £ ds for time
t

o
{t—toj. Since £ > 0, it follows that for all &t > 0

T4+AT
X ~xE
t

G ¢ &s ds > 0 (2.7)

and thus, sample functions of stochastic process
{Xt; to} are nondecreasing functions of time t

(Fig. ‘3.

In further exposition, the following system of

stochastic processes, defined as functions of ¢

Ep0 Wil

be discussed or studied (see Fig. 3):

(1 Nys the number of complete storm events in the
time interval (to,tl;

(2) n,, the maximum number of storm events after
to with the total precipitation which does not exceed
the quantity x - Xqi

(3) {Tv; v=1,2, ...,}, the times of ends of

storm events, which is a random sequence of points on
the time scale;
(4) XU, the total precipitation for v storm

events;

(58) z,=X -X

v-th storm event; and

1’ the total precipitation during
i

(6) {Xt; ¥ i to}, the total precipitation in the
interval (to,tl from the initial absolute time t, to

any time t, as a stepwise nondecreasing cumulative
function of Et.

Before going further, the discussion of some basic
properties of stochastic processes from (1) to (&) is
appropriate. Since t and x are continuous varia-
bles, Ny and N are continuous parameter stochastic

processes.
bles, Ny

However, for fixed t and x, random waria-
and N, are of the discrete type (counting

variables) i.e., n_ and My can be 0, 1, 2, ... only.

t
The stochastic processes T Xv and i are the

discrete parameter stochastic processes; however, for
the fixed value of the parameter v, the processes
1 , X and Z are continuous random variables. By

v W

u
virtue of the definition, for all 4t > 0 and
Ax > 0, n and Ay S and for all

-
1) -y

< f T X
t — ltest? - xeax?

a— b T T
eevyand k=1, 2, oo 7€ T and

Finallg for all v = U, Zv

.

= 0 and
{J

<
|

-

2.2 Some basic considerations. In terms of proba-
bility theory, a random experiment or a random observa-

tion is the svstem

(= {wh,#,P) 2.8)
where (. is the space of elementary events w,#is a
v-field or o-algebra which consists of subsets of i,
and P 1is probability measure defined on the class .

Phenomenologically speaking, an elementary event
w represents an outcome of the experiment and @ rep-
resents the set of all possible outcomes of this experi-
ment, The class £ is the set of all possible events
that are sets of w and whose probability can be



o ————

/ﬂ"{' H

I~
<,

Xy ==K,

L =l

>
€

Xy

S SRR,

1 Xo) Tyt

&

Fig. 3 A sample function of the process {X ; t >t }

determined. Finally, P is a function (so called
probability measure) which associates a definite proba-
bility to each event from ..

In the case of precipitation, the intensity hyeto-
graph of the type given in Fig. 2 represents an outcome
w of random observations, and { is the set of all
possible hyetographs that may occur. Therefore, o
represents a functional space, whose elements are func-
tions of time t. One may assume R as the set of all
continuous functions defined on [to,TJ, where T can

be w=. Any function from f is called a sample func-
tion or a realization of the stochastic process, gt.

All possible measurable subsets of @i(i.e., abusing
a bit of language, all events whose probability calcu-
lation has sense) make the o-field. System (0,4,P) is
frequently called the probability space. Examples of
measurable subsets or events belonging to the o-field,
assuming that Q is the set of all sample functions
of stochastic process &y of precipitation intensity,

which at
smaller than

are: (a) A subset of sample functions of i
a time t have the cuwnulative values Xt

a given x, where x > Xgi (b) the complementary subset
of all functions that have Xt > x at a given t; (c) the

subset which satisfies the condition that the total num-
ber of storm events, Nes in the interval Lto,t) is

Ne < Vi (d) its complementary subset of N, 2
similar subsets.

v, and

The points rj, j=1, 2, ... , which define the

ends of storm events, may be replaced by the points of
storm event beginnings, or storm events centroids, by
their mid-points (50% of the total storm precipitation
is before and 50% is after the mid-points). The basic
results will not be changed if one set or another set
of t-points is selected for the definition of stomm
event positions in time. Theend effect in sample func-
tions is important in this case. The times X, and t

may divide storm events into two parts. For the inter-
val {ta,t], the end point % is then inside the interval

(to,t], and the end point t is outside this interval.

v+l

It can be assumed these two end events may, on the
average, compensate each other. Their parts inside the
interval {to,t], immediately after to and immediately

before t, should constitute one storm event in such a
way that v end points Tj’ §om 1,2, viiy¥,; 1n the

interval [to,t] are equivalent to v storm events.

In order to determine some probabilistic proper-
ties of the above six families of random variables
derived from ﬁt, of interest in this investigation, two

classes of measurable subsets of @ are first defined.
In fact, the o-algebra £ is generated by the sets of
these families.

T -

First, let bwo denote the subset of the space

2 which consists of all sample functions (all outcomes
w, or all realizations) of the stochastic process 5:'

which haye exactly v points Ij in {to,tl, In other

words, Euo represents the random event that exactly

v complete storms will occur in (to,tl. According to
the definition

E° = {Tv £t % Jina w 050525008 B2 B u

o @)

T
u+l

It is not difficult to see that for a fixed
t > to the system of random events of (2.9) represents a

countable partition of the space Q , i.e.,

= Tt t,t tyot
U E, =0, E; n Ej =8 -3 o F &0 . Pines .
v=0

(2.10)
where © stands for an empty set (the impossible event).

In other words, the union of all events of (2.9) is a
certain event, since in any time interval [to,t] the

number of storms must be 0, or 1, or 2,..., and any of
these two events are disjoint events. However, it can
be seen that in the general case



tost tstat
Ei n Ej # 6 for any At > 0.
X X
Second, let G‘J be the set (subset of Q) of all

sample functions of the stochastic process £y, so that

the total amount

of precipitation Xu during v storms

is less or equal to (x - xo), and X

exceeds (x - xo),

i v+l
X A%

6% =1{Xx <x<X_..},v=0,1,2,00.; x>x__ (2.11)
v v - v+l ? i o e s . B ¥

According to the definition, for all x > Xy the system

of random events of (2.1]) has the following properties
3995 - X X
® XX o o' _ A S .
Guu n, Gi n Gj =0y L § =0,1,2,:..3
V=0
T (2.12)

i.e., the system of (2.1) represents a countable parti-
tion of the space .

The reason the systems of (2.9) and (2.11) of random|

events are selected is because the distribution and
density functions of the above six stochastic processes,
derived from fy» can be cxpressed in simple fnrms as

ts K3 X
functions of probab111tles of E and G °°". On
k] tt N X sX
the other hand, probabilities P[E ) and P{G )
can be determined easily for all v = 0,1,.,...,t 2,

and x > Xy under very general assumptions.

Now, it is possible to define precisely the struc-
ture of the probability space (0,#,P). The definition
of the space 0 is clear, as it is the set of all
sample functions of Et‘ The o-field (or c-algebra) #

is generated by the class of sets {X < x} and {7 < t}

where v = 1,2,..., x > x , t > t d
A Rl

It is apparent for

ve 0,1,2,0.0, Evo e, Indeed, according to the
definition

to,t

E, w {5, 2T 40 = 5, <t}n{rv+1>t}EJ@.
Similarly,

X X

o s
Gv = {)(\'| g xv*l} = {XU < x¥ n {Xv*l > xle S .
t ,t xo,x

Therefore, the classes of sets, E and Gu =

generate the o-field

Finally, two basic properties of probability

measure P are assumed to be
t,t+At
EZP(E ) 1 P(Et t+AtJ P(Et t+a5
lim = 0 or lim
At+o Ak At+o ok
=0 (2.13)

and

“ X, %+8x
uZZPLG“ ) b P(Gx x»ﬁxJ P{Gx x*bx}
lim ST R 0 or lim ry
Ax+0 Ax+o A
=0 (2.14)

for any value t and x, respectively.

the sum of all probabilities, P(Et t+ﬂtj for v > 2, is

In other words,

a higher order infinitesimal quantity in comparison

with At, and similarly for the sum of P[Gx x+ﬁx) for
v > 2

in comparison with Ax, if At and Ax tend to
Zero.

Assumption of (2.13)means physically the proba-
bilities of two or more storms to occur in the infini-
tesimally small interval of time At tend to zero much
faster than At. Similar physical interpretation is
valid for the assumption of (2.14).

In addition, the conditional

t,t+At

grobab:lities for
the occurrence of El'

, given E ©"", should satisfy

the following condition

t+AL

P(El' IE )

A {t v) = lim
At=+o

At y&a18)

with Ai{t,v] > 0 for all points ta(to,wj. To determine

the probability of a storm event just after t, in the
interval (t,t+At), the function Al[t,uJ should be inte-

grated in this finite small interval, or approximately
it is A, (t,v)at.

Similarly, the conditional probability for the

%X
occurrence of Gx x+ax’ given Guo , should satisfy the

following candltlon

P(Gx,x+ﬁx

A (x,v) = lim
Ax-+0

o (2.16)

with xz[x.v) > 0 for all points of xe(xo,wJ. The
conditional probability of a storm of Ax-amount at x
is for small Ax approximately equal to Aztx,vJax.

In the following, it will be assumed the functions
Altt,v} and AZ(x,v) do not depend on v, i.e., when
Ap(t,v) 2 A (E) and A, (x,v) = A, (x).

see Altt) and lz(x) are constants if &t is a stationary

It is easy to

stochastic process. It is expected that Al{t) and

AZ[x) are periodic functions for the studied £, process,

if this process contains the periodic components.

2.3 Distribution and density functions of derived
stochastic processes. The one-dimensional distribution

(and corresponding density) functions of the stochastic
processes derived previously from (2 will be determined
in this subchapter.

Distributions of n_, n_, 7, X and Z can be
t X v v v



ot
easily expressed in terms of probabilities of Eu °r .

X X
and Gvﬂ' - events as follows:

By definition

P{n, = v} = p(EFO’%) | (2.17)
v
Denoting the mathematical expectation
E("t) by Alfto,t}, then
Atg,t) = & ve(Eter®)
v=l (2.18)
Similarly, for the process nx,
X
Pin, = v} = P(G,0'"), (2.19)
and the mathematical expectation E{nxJ is
-]
Ry(x %) = T wR(GIO' ™), (2.20)

u=l
For P{r <t} = F (t) and dF (t)/dt = £ (t), the

distribution and the density function of the variable
t,» it can be proven (see Appendix A) for every

v=l, 2, ...
v=1
F.(¢) =1- & B0, (2.21)
v j=o0 b
and
£ (L) = ll(t,v-liP[EtEit), (2.22)

provided the conditions of 2.13)and 2.15) are satisfied.

For P{Xv

distribution and density functions of the variable
X, it can be proven (see Appendix A) that for every

o Lo @y i

< x} = Au(x} and av[x), the respective

1

e
Af(x) =1~ ¢
- -

p{G’j‘O”‘)
J

(o]

and

LX) = A, (x,v=1)P(6,01 %), (2.24)

provided the conditions of (2.14)and (2.16)are satisfied.

For P{Zv <z} = Bv(z) and bv(z) the distribution

and density functions of the random variable ZU, it
can be proven, keeping in mind Z,=X, =X, 1» under

the assumption ZI’ Zyy cnes Zv,... are independent

random variables,

b4
u
a, (x +z) = c! a,_;[(x+z) (1 = )] b (u) dy,
(2.25)

where u is the dummy integration variable. Solution
of this convolution integral equation gives the density
function bv(z] of Z\J .

It is clear from eqs.(2.17) through(2.25) that dis-

tributions and density functions of Mes Nys Ts xv and
Z, may be obtalned as soon as prubab111t1es of the
T
events Eu°' and G *0'* are known.
|,

2.4 Determination of probabilities of E © - and

X, X

o
G -gvents.
D

The probability that v
will occur in the interval (to,t+ﬁt), where At > 0, is

storm events

£ P(Eto' oEAE

r=o

N E

p(ESO't”'tJ )

By using the condition of (2.13), then

t_,t+it AV

o R [ t,t+At
P(E, ) =PES N E

o
) + P(E° ° n Et #TPRt,

+ ofat) ,

where o(At) is the higher order infinitesimal in com-
parison with At, when At approaches zero.

As
ghit+dt _ o NVE: t t+it )
=]
then
p(Eto't+At) ~ P(Eto’ § p{EtO' n Et t:+4:'.t,+

+ p(ECOI® N EJI T

+ g(At) .

Taking into account the condition of (2.15), one obtains
the differential equations for the probability of events
i to't

v

t,t
P(Ev° ) Tt
_ = -Alft,\))P(Ev

ot

T to,t
)ah (E,v-1P(E2) ) (2.26)

forv=1, 2, ..., and
%%
ap(r-;o" ) tt

> = - A (L, OJP(E ) (2.27)

for va0 .



Finally, by virtue of the relation of (2.15),it follows

™ t ,t
[¢]
Al{tJ = I .11[1:,\J‘}13(E\J ) (2.28)
V=0
where
pEEi,t+AtJ
A (t) = lim @ — (2.29)
1 A0 At

If Al{t,uj is an integrable function for all

vs=20,1 2, , and
t ot 0 for v > 0
1im P[Evo ) =
t-"tc; 1 for v=20

then the solution of eq. (2.26}1is equal to

£

i i
P(EUo ) = expi- [ ll(S,OJdS}' / Ay (tyv-1)
t t

o ]

] Y t
exp{[ “8A, (s,v)ds}[ Alftz,v-Z)exp{f 83, (s,v-1)ds}
t t t

] [} Q
t t t
v=2 LV § v=1
5 { J\l(tv_],l)exp{{ 84, (5,2) ds}-{ A (2,0
[s] [} o

t
exp{ [ ¥ 81, (s,1)ds}-dt dt

t
(o]

i e U8y (2.30)

where ﬂAl{s,u-l) = Al(s,v-l) - ll(s,v-l—lj, and s, tl,

t t, are dummy integration variables.

21 tee s
Some particular cases of eq. (2.30)are considered
here.
1. A, (t) is independent of v, or Al(t,u) =
A (2).
ﬁll[t) = 0, so that

In that case obviously ﬂllﬁs,v—lj =0, or

t
—ft A (s)ds
0

tot Y
P(E,” ) =e J oA / Ay (2y)
t t
[e] Q
tv-l
{ M) dedt o ... dty . (2.31)
[+]

It is easy to see eq. (2.31) may be reduced to the form

i 3 (s)ds g* A (s)ds]”
t,t t t

y=e ° 2 (2.32)

vl

24 il[t,u) = E(v), or independent of t but

dependent on v. Since the difference all(t;u-lJ is
now equal to aAI{t,v-lJ = r(v-1) - g(v-i-1), assuming

T = 0, eq.(2.30) becomes

g o v-1 t t
- t y A
P(EU0 ) =e R M zi) f e C(\J)tl f leﬂc[u)tz._,
i=o0 (] 0
t Az (M)t
v=1 v
£ e dtdt ... dt; (2.33)

where Az(v) = £(v) - t(v-1). If one assumes g (0),
t(1l), ... represent an arithmetic progression, then
4z (v) = p = constant, and
v=-1

ook n

o} 1=0 pt v o =E(v)t
PES ) = i ™ - ¥ e vle (2.34)
which finally gives

(o)
£ B rf + v]
.0 _ o~ Eo)t [’ -ptyv
PE° ) =e ey @ - WP | a8

In this case the

3004w = A @) ().
differences of eq.(2.30 become aAl{t,u-l} = ll(tJ
[e(v-i) - g(v-i-1)]. Assuming t_ =0, and c(o), 5(1),

., represent the arithmetic progression with Ag(v) =

p = constant for all v = 1, 2, ., then

t

o
RIEg" J=e To)

T
O N EHET
; © £ [l-e 8 )

(2.36)
t it
In a similar way as for P{EvD ), the properties
¥ 5%

[#]
of P(G

(2.14) and (2.16), then

) can be derived. By using the condition

X ,X
BP[GUD ) Xy % X X
-~ = Ay (,v-1P(6 % ) - A, (x,vIP(C° ) (2.37)
for vml, 2, , and
X_ X
BP(GOO ) XX
—— = - 3,(x,0P([° ) (2.38)

for v = 0, which finally gives

X ,X

X X
P{Gvo ) = exp[-£ Azﬁs,u]ds]- ,{ A, (x4,v-1)

xl Xl J(z
exp[{( By (s,v)ds | / Ay (xy,v-2) exp [ 8, (s,v-1)ds-

X X

[#] (o] o




-2 1 fx“'l A, (5,2)ds fx“'lx

e I 2 {xu-l* ) exp A 2(-‘5: ) . Z[X’o}
X X x
[] o o

xV

exp[[ Mz(s,les]dxudx“_l...dxl, (2.39)
o

where s, X1y Xgy eve, X ave dummy variables, and
BAy(s,v-1) = A, (s,v-1) = A,(s,v-i-1) . (2.40)

For the assumption J\z[t,u} g .\2[1:), eq. (2.39) gives

X v
i hz(s)dﬁ

X X

j Az(s)ds]'—-—-—-—\-”— =

X
0

(2.41)

% 4%
P{GvD ) = exp [-

2.5 Some basic properties of functions Al(t,v)

and "2[";\’!-

processes n., N, T , X

The distribution functions of stochastic
and Z are related to proba-
v
Lt %X 0k
bilities of ranaom events Ev and Gvo which in turn
are functions of xl(t,u] and Aztx,u).respectively.

v

These two functions represent the essence of the entire
theory and as such deserve particular attention.

In the following it is assumed

ll(t,u) = ll{tJ ’ xztx,vJ = xz[x) 5 (2.42)
Consider the functions Alﬁto,t) and Aztxo,xI that

represent mathematical expectations of random variables
n, and Nyer respectively. It is not difficult to prove

(see Appendix A) that for any At > 0

Ap(eg,t + 8t) = A (t,t) + A (t,teat) . (2.43)
Similarly, for any Ax > 0 if follows
Az(xo,x + AX) = Az[xo,xj . Az(x, X + AX) . (2.44)

On the basis of definition, Al[t, t + At) repre-

sents the average number of complete storm events in
(t, t + At]. On the basis of the nature of the pre-
cipitation phenomenon, it looks realistic to assume
AI{t' t + At) + 0 if At + 0. Since

Ap(t, t o+ at) = Aj(e .t + at) - Aj(E ,t) ,

it follows that nl(to,t) is a continuous function. Now

consider the derivatives of expressions (2.26)and(2.27).
If one multiplies the left and right side of eq. (2.26)

by v and takes the sum from v = 1 to v = =, it turns
out
toot
@ aP(E ) © T -
I v e = - I v.\l{t,v)P(Euo )
v=l vel

10

L to,t o to,t
+ I vAl(t,u-l)P{Ev_l )= L J\l[t,v]P[Ev ;
v=1 V=0
i.e.,
A, (L ,t) = t ,t
? Shotl = o
T vfoll[t,v)l’(ﬁ“ Y & (2.45)

On the other hand, from the relation of (2.15) results

t,t+At 1:t:a’t' to’t to't
P(E)’ n B.- 1w ll(t.V)P(Eu Jat + P(Eu Jea(At)

or
w t,t
PEET ™) w g A (6, VPE S Yot + o(at) .
wEQ
Therefore, it follows
bty . -
A (t) = lim = I A(t,vPE® ), (2.46)
1 At+o aL ymg 2

and by virtue of 2.45) and (2.46) it turns out

any (¢ ,t)

=2 (2.47)

— ll(t] .

On the basis of eq.(2.32), the density function of (2.22)
becomes

[t
- A,(s)ds
t 3§

A, (T)
1 e 0

T(v)

t -1
([ A (s)ds]”
: o

£,(t) = (2.48)

[¢]

where v = 1, 2, ... .

Another useful interpretation of Al(tJ is in con-
sidering the expectation of Ny» (using eq. (2.32)

t t ¥
-f Ay (s)ds {Al[s)ds

t
o

E(“t) = Al(to,tj = I ve
v=]

0
v!

t
= [ A (s)ds
tO

so the average number of storms in the interval (to,ﬂ
is equal to

t
E(ng) = A (t,t) = [ A (s)ds ,
Q
in which "l(t} represents a kind of density of storms
in a unit of time.



Because of daily and seasonal variations, it is
realistic to expect that Altt) is a periodic time func-

tion, with a day or a year as periods, individual or
superposed cycles.

If the interval of time [to,tl is sufficiently
small or if the £, -process is stationary, so that the
function lltt) is approximately equal to a constant Aps
and t, may be taken as zero, then the number of storms

ﬁt is distributed according to Poisson distribution as

v
e - -hlt ) (AIt]
) =e -
vl

(2.49)

t
o
P{n, = v} = P(E,

Similarly, assuming Aztx ,X) is a differentiable func-
tion, and 9

Azfx,v] - Az[x}

it follows that

X

X
-[ ay(s)ds [f azcs)ds]"
X % x X
P(Gvo y=e ©° . -—‘l-;-l— 3 (2.50)
and
X x 3
-f Az(s)ds [{ lz{s)dQ]
X = X
E{nx) L nz[xosx) LK | vil v __?T_

X
= [ Ay (s)ds . (2.51)
X

[+]

Therefore, by virtue of (2.50) the density function of
(2.24) of X, becomes

Ix
=] A,(s)ds
% 2

Aq (%) .

X
a,(x) = 75 [i J\;_,(.e.)ds]"‘1 . (2.52)

(]

With respect to seasonal variations it is realistic
to expect the function xl(t) is a periodic function with

a year as the period (See Fig. 4).
tion can be mathematically proved.
sider stochastic processes Et and n

t
the periodic probability structure it is obvious that

In fact, this asser-

Toward this end con-
,t; since Et has

o

v, _}

t+t

=
+T

P{"to,t = v} = P{nto (2.53)

where 1t is the period. For example, the probability
that in November of one year the v storms will occur
is equal to the probability of the same number v of
storms to occur in anyone of other years. Therefore,

t
P[E\J

t

) t°+1, t+1
) = P(E

o

),

v

i.e,;

11

t t " t+1 T+1 0
-] 2 (s)ds [f 11[5)(15] [ A (s)ds [J' xl{s)di_
t ) J T .*T T +T
o 0 o [*]
e ¢
v! !
Using the substitution
u+t=S$s ds = du,
the left side of the last equation becomes
T+ .tc+1 v
[ s [ Al(s}ds]
Tt +T t +1
o L0
e
v!
T = =
z -I Ay (u+t)du ,f A, (u+T)du he
t 1 t 1
e © Lo
vl
or
t £ g t t 3
=[ A, (s)ds |[ A, (s)ds -] A, (s+1)ds [[2, (s+1)ds
h g 1 1 1
S o t o
e ——=ze -_—

v! v!

which is possible only if

A (8) = A (s+)

which proves that ll(t) is a periodic function (see
Fig. 4).

On the basis of eq.(2.51), the average number of
storms needed to produce amounts of precipitation (x—xo)
x
is equal to f Az(s)ds . Therefore, the function

X
o

Az(x) is a characteristic of the amount of precipitation

of one storm.
function.

It should be a constant or periodic

AL

A (1)

>
1>

Fig. 4 Graphical presentation of the function Altt)

For a small amount of precipitation (say x-an,
or if the £t-process is stationary, xz(x] is approxi-
mately equal to a constant A,, and x_ may be taken as
zero, so the probability of  the number of storms for the



given amount of precipitation X, according to eq. (2.50),

becomes a Poissonian distribution (xo = 0) and
X ,X -h,X (A x)“
- - o’ _ 2 K 2
P{nx = v} P(G," ) =e 5 (2.54)

The mathematical expectation of the variable 27

can be obtained from eq.(2.48), or from its density
function, as

E(T ) =

[t

t t
( th, (t)exp[-] A, (s)dsl{[ Alts}ds}"‘ldt
1: t t

o o

In a similar way

E(XV] =

@ x X
L v=1
O f th(x)exp[-f Az{sjds]{f A, (s)ds}” “dx
X b X

o] [o] [#]
The estimate of these integrals can be made under

the assumption that both Al(t) and Az(x) are bounded
functions, with ll(tj > 0 and Aztx) > 0 for all t and
X respectively. In other words, one can prove

W v A

W
—yLIS0E T S=EEREL e (R
1 =] 2
where 51 = inf Al(t) is the lower bound of ll(t) for
any t, I} = sup ll(t), the upper bound of Xl{t); and
32 = inf Az(xj, Az = sup Az[x).
It can be shown that (see Appendix B)
1 1
;—iE(th -E(,_) 2 (2.56)
1 =1
and
W 1 3 M 1
I —=< ¢ {E(TU) - E(t 1]]-5_ I ow= (2.57)
v=] ll v=1 L8 v=l =1
and assuming E(To} = 0,then
W W
— < E(1 ) < = (2.58)
ﬁi L A
In a similar way cne can show
W W
v SEX) = 5 (2.59)
2
where
lz = sup lz(x) and ig = inf kz(x)

assuming _A_Z > 0,

12

2.6, Some asymptotical distributions. In the
previous sections the density functions fy(t) and

and XU have been

theoretlcally derived for all v = 1, 2, . » It was
shown that under the relations of egs. (2 13 and (2.14)

a (x) of the random variables T,

£,(t) = A;E:; efD Al(s}ds (gt J\l(s)dS)“_l (2.60)
i'xA d
o 5 5
a,(x) = Afg; e © o 1l xzcs)dsJ"'l (2.61)
o
where v = 1, 2, ... and ['(v) = (v-1)!

Now, an effort is made to investigate behavior
of the functions of (2.60) and(2.61) for large values of
v. It will be proven that both of the density func-
tions tend to the Gaussian distribution if v + =, if

periodic functions Alﬁt) and Az[x] are bounded. In
other words, it can be shown that for large v
(t - v/ap)?
M Z(v-lJ(n*) -
fv{t)dt:—e dt sA <AT < M
v2n(v-1)
(2.62)
(x - v/r5)?
A% 2(v-1) [AE)”Z -
a (x)dx 1 ————e dx,iz<}\5<,\2.
v v2m(v-1)
(2.63)
Indeed, consider first the density function of

{2.60)% since, according to hypcthesis,ll(t] is periedic

and bounded, then for large t approximately

A¥E |

§ (2.64)

t
f Al[s}ds z
0

Therefore, on the basis of eq.(2.64) and the Stirling's
formula
b of B8 nn eun /Eﬁ;,
eq. (2.60) becomes
v=1
A% -A3t Aft .
fu[t]dt B —— v e dt
Y2 (v-1)
li —[Ait—u+l} ME o1
3 — (U:T dt .
vam(v-1})

By virtue of the substitution

du

u = A%t - v+l dt=1'-;.

1 (2.65)



Then

£ (t)dt = —L eV -“_1)“‘1 du .
V27 (v-1) L
If v is a very large number it follows that
2 2
(v=1In(l + =)z (v-1) {2 - — ¥ Je y - —H_
v-1 v-1 2(v-1)2 2(v-1)
or
.u vl _ u u?
SRS R (g
therefore,
uZ
£ (e)dt : —2——e 2071 g4

VZr(v-1)

Finally, by virtue of eq. (2.65)
v-1

(t =ie=m)
Ay
a T
£ (t)dt 3 ——te o SV T 4
¥ V2 (v-1)

i.e., for very large v, f“[t) tends to the Gaussian
distribution with mean and variance equal to

‘;;1 ang HoL. (2.66)
1 (J\*Jz
1
respectively.

In a similar way one can conclude eq.(2.63)is
correct as well. It is easy to prove that the result
is not a trivial consequence of the central limit
theorem, regardless of the fact X is the sum of ran-
dom variables, i.e., ¥

because none of the conditions of the central limit
theorems are satisfied.

2.7 The distribution of Xt. The random variable

X, was defined as the total amount of precipitation
during the interval (to't]' To determine the distri-
bution of xt, consider the event

Bt[x) = {u;xt <x}, x o I

The corresponding probability P[Bt[x)] represents the
one-dimensional distribution function Ft(x) of the

stochastic process Xt , 1.e.,
P{w; Xt <x} = Ft(x} .

On the basis of eq. (2.10) the event Bt(xJ can

also be written in the form
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© ok
B,(x) = U [E° N B, (2.67)
LVE-
which implies
o to,t
Fo(X) = z PIE," N B.(X)] , (2.68)

v=o

In pAppendix C, it is shown the above equation
can be reduced to:

o
Ft{x) = I ‘E
v=0 j=v

t

X ,X
P(E °
v

,t
N Gj" ). (2.69)

If it is assumed that the interval (to,tl is

X.o,

o t X
sufficiently small, then the events EUO’ and GJ

are indepenent. The probabilities of these events can
be represented by the Poisson distribution (thereby
assuming constant Al and 12). The distribution function

of Xt can be written as:

@ @ (A trAX)
Ft(x) = E I ¢ 2R

v ]
[J\ltj (lzx)
v=0 j=v

T *(2.70)

For x = o, eq.(2.70) reduces to

=A

t
. 1
Ft(oJ = e

The density function of the random variable Xt can

be found by differentiation of Ft(x):

aFtExJ
268 = e
L= U - -] j
-At (0 A,x (2,%)
= e b 7 [—lze b —
veo j=v It
j-1 v=-1 v
-Azx ] Zf}zx} -Alt-hzx © (Azx) (llt)
+ e b 17T ]=Aze £ T 1
j='\-' [J" J vel (U' ) v
A EAx @ (Alt)k*l uzx)k
= e I ; -
2 s (k+1)! k!
T -dtelx o (2/AEx) 2kt
1 172 172
~A¥ix® Lo, o
2 k=0 2 (k+1) !k!
lt -llt-kzx
= aN— e 1. (2VA A, tx) (2.71)
lzx 1 12

Here, Il[ZflllztxJ is the modified Bessel function

of the first order. To facilitate determination of



the value of the modified Bessel functions for large
arguments from tables (British Association Mathematical
Tables, 1958), eq.(2.70)can also be written as

-(fllt -IAZx) l1: -kalkztx
2 Sap® il(zfllkztx)

f;{x) = A g

(2.72)

However, because of the discontinuity of the dis-
tribution function at x = o, for the density function
as shown above
-A,t

f f;(x)dx =1-e 1
0

The density function therefore must be corrected,
by using the Dirac & function and the knowledge that

-Alt
Filo) =e ,
to read as follows
»klt
ft(x) = §(x)e + f;(x] (2.73)
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where
é(x) = o for x #o

§(x) = = for x = o,
and

@

] é(x)dx =1 .

The mathematical expectation of Xt is equal to

A
E(xt] = T; t

(See Appendix C).

The variance is equal to

ZAlt

var (Xt) =-}.—2:—

(2.74)

(2.75)



Chapter III

RESEARCH DATA ASSEMBLY FOR TESTING MODELS

3.1 Objectives of data assembly for investigation
of stochastic process of precipitation. The theoretical
background, as given in the previous chapter, shows that
some properties of Feriodic—prohahility structure of
stochastic process it} have been expressed in terms of

1’ which
is the density of number of storms in time, and X

two parameters which change along the year: A

2!
which is the yield characteristic of storms, in time.
Distributions of all random variables, which are given
as functions of {£ } and were studied in the previous

chapter, are expressed in terms of either A, or A, or

of both, .

2

To verify how well the theoretical distributions
of random variables, which are functions of the {Et}'

process, fit distributions of observed samples of vari-
ous precipitation storm data, the research data are

first assembled. Then, parameters Al and Az are esti-

mated as they change throughout the year. Finally,
empirical distributions are compared with theoretical
probability distributions, the latter based on the com-
puted Al- and lz-parameters. The first objective of

the research data assembly and analysis is to show
approximate variations of Al and lz through the year

for some precipitation stations, and particularly
whether they are or are not periodic in nature. Then,
by using these values of Al and X,, theoretical proba-

bility distributions of new variables are derived and
compared with the corresponding distributions as ob-
tained from data.

3.2 Selection of number of precipitation stations.
Precipitation data are currently available in the form
of discrete time series of hourly, daily, or monthly
values. Rarely are the continuous series of precipi-
tation intensities available. The monthly-interval
series is not relevant to the present study. Series of
hourly precipitation contain numerous data. They are
often cumbersome to handle, even by the computer tape
input. The use of time series of daily precipitation
is imposed by the type of data available.

The approach in this study is to show, by a few
examples, how the theory may be applied to particular
cases, rather than to use an exhaustive approach of
applying the theory to hundreds of stations for obtain-
ing statistical characteristics of goodness of fit of
theoretical probability distributions to empirical dis-
tributions. Therefore, only three precipitation sta-
tions of daily data and a station of hourly data are
chosen as the research material for objectives of this
study. An exhaustive approach will be feasible once a
methodology of application of the above theory is well
designed and tested on a small number of representative
examples.

The three stations of daily values are:

(1) Durango, Colerado, for 71 years of observa-
tions, 1895 to 1965, on the western slopes of the Rocky
Mountains, with an average annual precipitation of P =
19.02 inches;
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(2) Fort Collins, Colorado, for 69 years of obser-
vations, 1898 to 1966, on the eastern slopes of the
Rocky Mountains, with an average annual precipitation
of P = 14,32 inches; and

(3) Austin, Texas, for 70 years of observations,
1898 to 1967, which is influenced by the Gulf of Mexico
air masses and clearly has two rainfall seasons, with
an average annual precipitation of P = 33.02 inches,
The records of this station 35 years prior to 1898 have
missing data, from time to time, and were not found
feasible for computer oriented processing.

Hourly values are assembled only for a station at
Ames , Iowa, for a period of 18 years, January 1949
through December 1966. The average annual precipita-
tion of this station for this period is P = 28,89 inches.

5.3 Basic characteristics of daily and hourly
precipitation series. In order to study basic proper-
ties of storms by daily or hourly precipitation data,

a year is divided into 28 intervals, each 13 days long,
for a total of 364 days. The 365th day is neglected,
or in case the year has 366 days, the data of the two
last days are neglected, whenever the properties of 13-
day intervals are studied. The only reason for selecting
13-day intervals was the fact that 13 x 28 = 364 so that
intervals are equal in size, as opposed to months which
are of different size, and that tﬁe residuals (loss of
information) are only 1 or 2 days per year. Any other
interval could be similarly used. It was also con-
sidered in this study that 28 values of 13-day inter-
vals will give a much better picture of how A and Ay

vary within the year. A much greater number would in-
crease the sampling variations in A, and A, while a

smaller number of intervals may decrease the informa-
tion about them.

Basic characteristics of data are defined in this
study as the means, standard deviations, and coeffi-

ients of variation of individual 13-day intervals. If
n = the number of years of data, then
L 0
m == I X Jod
2w I (3.1)

are these means, with xp %
an interval for a given year, with intervals 1
1,2,...,28 and years p = 1,2,...,n. Similarly, the
28 standard deviations are

the total precipitation of

n
L

p=l

1 T
. * e [xp’TﬂmT]zl (3.2)

and the corresponding coefficients of variation are
(3.3

with s given by eq.(3.2)and m_ by eq.(3.1]. If each

value of eqs.(3.1)and (3.2)is divided by 13, then they



give the densities of daily precipitation characteris-
tics of means and standard deviations, over 13-day
intervals.

Figures 3.1 through 3.3 give densities of daily
precipitation characteristics referring to 13-day
intervals, for the means (in inches per day), standard
deviations (in inches per day), and coefficients of
variation for precipitation series of Durango (Coloradd),
F?rt Collins (Colorado) and Austin (Texas), respec-
tively. Similarly, Fig. 3.4 gives these densities
(this time over hours) and coefficients of variation

for Ames (lowa). Left hand graphs in these figures
show the computed densities of means and the fitted
periodic components of significant harmonics in these
densities. The averages of these graphs multiplied

by 365 give the total average annual precipitation of
each station. Central graphs show the computed den-
sities of standard deviations and either the fitted
periodic components of significant harmonics or the
mean values of these densities of standard deviations.
To obtain the standard deviation for a 13-day interval,
the values of central graphs must be multiplied by 13
for daily precipitation, or by 13 x 24 = 312 for hourly
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Fig. 3.1
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Densities of means and standard deviations, and the coefficients of variation of 28 intervals of the
year, each 13-days long, for daily precipitation series at Durange, Colorade (1895 - 1965, for n = 71
years): (1) computed densities of means, LI in inches per day; (2) fitted periodic component to
densities of means, ur, composed of significant harmonics; (3) computed densities of standard deviations,
S in inches per day; (4) fitted periodic component to densities of standard deviations, ¢_, composed
of only the first significant harmonic; (5) computed coefficients of variation, rcv’ and (6) fitted

periodic component, B, to coefficients of variation, composed of only the first significant harmonic.
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and standard deviations, and the coefficients of variation of 28 intervals of the
long, for daily precpipitation series at Fort Collins, Colorado, (1898 - 1966, or
computed densities of means, m_, in inches per day; (2) fitted periodic component to

Densities of means
year, each 13-days
n = 69 years): (1)
densities of means, Hes composed of significant harmonics; (3) computed densities of standard devia-
tions, s_, in inches per day; (4) fitted periodic component to densities of standard deviations, o
~
composed of significant harmonics; (5) computed coefficients of variation, "Cv, and (6) fitted periodic
(Y
component to coefficients of variation, BT, composed of only the first significant harmonic.
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Fig. 3.3 Densities of means and standard deviations, and the coefficients of variation of 28 intervals of the
year, each 13-days long, for daily precipitation series at Austin, Texas (1898 - 1967, or 70 years):

(1) computed densities of means,

m_, in inches per day; (2) fitted periodic component to densities of

means, u_, composed of significant harmonics; (3) computed densities of standard deviations, L in
inches per day; (4) the mean of 28 values of computed S. with no harmonic being significant; (5)

computed coefficients of variation,

being significant. L

CV, and (6) the mean of 28 values of computed ch, with no harmonic
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Fig. 3.4 Densities of means and standard deviations, and the coefficients of variation of 28 intervals of the

year, each 13-days long, for hourly precipitation series at Ames, Iowa (1949 - 1966, or 18 years): (1)
computed densities of means, m_, in inches per hour; (2) fitted periodic component, L densities of

means, composed of the significant first harmonic; (3) computed densities of standard deviations, S
in inches per hour; (4) fitted periodic component, ¢_, to densities of standard deviations, composed of

only the first significant harmonic; (5) computed coefficients of variation, th, and (6) the mean of

28 values of computed _Cv, with no harmonic significant.

precipitation. Righthand graphs show the computed
coefficients of variation and either the fitted peri-
odic components of significant harmonics or the mean
value of these coefficients.

Significant harmonics are determined in this case
by using the following approach. Any parameter %, has
the equation for its periodic component:

A, cos A.T + B, sin A.1), (3.4
( J J ] J ) )

=1
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where Aj = 2nj/w is the angular frequency, w = the
number of ordinates in the basic period in v, M=

the total number of harmonics inferred as significant
in the Fourier series mathematical description of the
periodic component, Aj and B. are Fourier coefficients,
j = significant harmonics, and A - the mean of w values

of v_with v = 1,2,...,u. In this particular case uw =
28, and L refers to either p_, o, or BT, respectively
L3

for mos S and ch'



Coefficients Aj and Bj of eq.(3.4)are estimated

by
o 2miT
A, == T (v -v.) cos T (3.5)
j - T w
=1
and
P, = 2 ? (v_-v_) sin nj (3.6)
ioow e L w '

For w = 28, the maximum number of harmonics is
w/2, or w/2 = 14, Experience shows that the first six
harmonics are the most important, or 1 < j < 6; harmon-
ics beyond the sixth are very rarely shown to be
significant.

The square of amplitude of any harmonic is

CZ =A% + BY @7
J J J
and the part of variation of any parameter 8 resulting
from this harmonic is C§/2. The variance of % is
;v
var v_ == I (v -v )2, (3.8)
T w T X
=1
and the parameter
c2
- (3.9
8 =372 3.9)
I Ge
j=1

is Fisher's parameter for testing the significance of
the harmonic with the largest Cj. As only six harmenics

are computed in this study for the three parameters,
then

2

max

replaces eq. (3.9)because both give identical values of
g. By using R.A. Fisher's [2] expressions and tables,
and probability P = 5%, the critical value g, is

determined for testing the significance of g of eq.
3.10, If g > g, = 0.3517, the harmonic is considered
as significant. For the second, third,... highest
values of C?, then
CE
= j (3.11
g o (3.11)
2 var B L Ci
i=1

where :Ci represents all harmonics with C, greater

il‘_’
than Ci’ with 1 denoting the sequence of Ci from the
The same test is repeated

of eq.(3.10)

highest to the smallest C..

o
for g of eq.(3.1D as for g

Figures 3.1 through 3.4 show the fitted periedic
components composed of harmonics which have been found
significant by the above procedure, It is expected
Jifferences between computed values of m, s; and
_CV and the fitted periodic components of significant

harmonics, u_, UT and BT’ represent only the sampling
3

random variation about these periodic components.

Figure 3.1 for Durango Precipitation Station shows
clearly a periodicity in both the means and standard
deviations of 28 intervals of 13-days. These perio-
dicities in m, and s, are similar, though the sampling
variations somewhat mask this parallelism. The signifi-
cant harmonics of 365 days of the periodicity in the
coefficient of variation has a very small amplitude.
For practical purposes, it can be neglected, with _C
being approximately a constant. Y

Figure 3.2 for Fort Collins Precipitation Station
shows a very pronounced periodicity in all three parame-
ters, mos S and TCv, though the periodicity in ch
has a much smaller amplitude of the basic 365-day
harmonic. A comparison between Durango and Fort Collins
stations points out some clear differences in time
patterns of precipitation amounts in the sequence of 28
values of 13-day intervals.

Figure 3.3 for Austin Precipitation Station shows
a periodicity in m_ while harmonics in §_ are not

shown as being significant.
tion,

The coefficient of varia-
Cy» does not show significant harmonics either.

A parallelism between m_ and s_ series is evident,
L

though the sampling variations make this property less
obvious.

Figure 3.4 for Ames Precipitation Station shows a
pericdicity in the mean, mr, and the standard deviations,

S.+ The parallelism of periodic components is a strik-

ing feature of this series of hourly precipitation.
Because of a short period of data of only 18 years, the
variations of observed values m and sTaboun the fitted

periodic components of o and o are likely to be pre-

dominately of a sampling character. This aspect is best
represented by tcv’ which does not show any significant

harmonic. It may be assumed to be approximately a con-
stant, independent of the time of the year.

3.4 Two approaches of using the research data.
The theory in the preceeding chapter is primarily
related to precipitation storms as continuous processes
whenever it rains. When the precipitation data are
given as daily values, the appropriate definition of
the storm is required. In that case, and for the pur-
poses of this study, the storm is defined as a precipi-
tation sequence consisting of an uninterrupted number
of rainy days. If the records show only one rainy day
with the preceeding day and the following day as non-
rainy days, then the storm is of l-day duration and its
total amount is the rainfall of that day. If the rec-
ords show four uninterrupted rainy days, then the storm
duration is four davs and its total amount is the sum
of rainfall for these four days. This definition is,
therefore, related to a discrete series. The random
variable, which represents the time a storm ends, is
new the last day of an uninterrupted sequence of daily
rainfall. The storm duration is the number of rainy
davs of a storm.

Regaraless of this storm definition, two approaches
were used in processing the research data: (1) Each rainy
day is treated as an individual storm event, whether or
not it is preceeded or followed by a rainy or non-rainy
day, and (2) Each storm is identified as an uninter-
rupted sequence of rainy days, as defined in the previ-
ous paragraph. It is not expected that theoretical
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development of the preceeding chapter would fit

the properties of daily precipitation in the first
approach. The second approach is considered more cru-
cial in testing the coincidence of theoretical models
to the empirical distributions of random functions in-
vestigated in Chapter Il. However, the real storm
duration may be shorter than the number of uninter-
rupted sequence of rainy days.

The hourly rainfall of the Ames Precipitation
Station is also treated by these two distinct approaches
because it is attractive to consider each hourly value
as an individual storm event, regardless whether or not
it is preceeded or followed by a rainy or non-rainy
hour. Second, the storm is defined in this case as an
uninterrupted sequence of hourly precipitation greater
than zero, preceeded and succeeded by non-rainy hour or
hours. Because the thunderstorm type of rainfall may
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frequently be composed of a succession of rainy and
non-rainy hours.. The use of each hour of rainfall as
being a storm for the study of precipitation phenomenon
produces a large number of small storms. For this
reason, only careful inference about storms ‘in the
first approach, in case of hourly precipitation can be
drawn.

In conclusion, the fact that the rainfall data is
currently available in the form of hourly or daily
values, and not as a continuous {£_} random process
whenever it rains, makes it difficdlt for an exact com-
parison between the theoretical and empirical distri-
butions to be made. Regardless of this, the second
approach to both daily and hourly series of storm defi-
nitions comes as close to the random process {f_} as

practically feasible, (although it is somewhat biased).



Chapter IV

DENSITY OF STORMS IN TIME

4,1 Significance and computation of the parameter
of density of storms in time. The analysis of six ran-
dom variables, which are discussed in Chapter II as
functions of the stochastic process {et} has shown that
1 This
parameter \1 is the average number of storms in a unmit

some of their distributions are dependent on )

of time during any time of the year. It is briefly
called in the title of this chapter and in the following
text as '"the density of storms in time." The basic con-
clusion in the previous analysis is that the existence
of periodicity in the {&t}~prGCEss is reflected as the

periodicity in the parameter Al' The year is the basic

period. In other words, the annual periodicity in the
mean, in the standard deviation and eventually in other
parameters of the basic process {£ } imposes the perio-

dicity in Al-parameter. Through Ay» all other random
variables, which are functions of {Et}~pr0cess and

dependent on *1‘ should exhibit a periodicity similar
to the parameter Ay
Numerical characteristics of Al—parameter are in-

vestigated in this chapter for the four examples of
precipitation storm data described in Chapter III. The
number of ends of storm events in each 13-day time in-
terval is determined as integers 0, 1, 2, ... , which
represent also the number of storms. The total of n
values of this number for n years of data is obtained
for each 13-day interval and for each station. Then

the expected value, the variance and the ratio of vari-
ance to the expected value of this number of storms are
computed for each interval. These values are obtained
both for the rainy days, with each rainy day considered
as a storm, and for the storms, defined as uninterrupted
sequences of rainy days, and for each of the three
series of daily precipitation. Similarly, they are
computed both for rainy hours, with each rainy hour con-
sidered as a storm, and for the storms, defined as unin-
terrupted sequences of rainy hours, for one series of
hourly precipitation. The expected values (means) and
variances of these numbers of storms are then divided
by 13 days for daily rainfall series, or by 312 hours
(13 x 24) for hourly rainfall series, in order to reduce
these values to a unit of time. In this new form, they
are considered as densities in time over the year.

These densities of means are defined as A -parameter.

The 28 intervals and their corresponding densities of
means, plotted for each interval, give a sufficient num-
ber of points for the study of variation of Al-parametcr

within the year. Similarly, the 28 densities of vari-
ance and the 28 values of ratio of the variance to the
mean (or the 28 values of the ratio of the density of

variance to Al) are plotted against time to show their

variations within the year.

4.2 Daily precipitation series at Durango,
Colorado. Figure 4.1 shows the properties of AI-

parameter of rainy days as a function of time t, with
each rainy day considered as a storm. Figure 4.1 gives
the same properties of A-parameter of storms which are

defined as uninterrupted sequences of rainy days.
Figure 4.3 shows the ratios of Al-parameter for the

first definition (Fig. 4.1) and the second definition
(Fig. 4.2) of storms.

Upper graphs of Figs. 4.1 and 4.2, lines (1), show
31 to follow periodic movements. Mainly, a 365-day

basic harmonic is present as significant in both fig-
ures, given as lines (2), while Fig. 4.1 also shows
the fifth harmonic (73 days) to be significant. It is
evident that the 95% probablity level in Fisher's test
of significance of harmonics does not show a very good
fit.

In both cases, central graphs of Figs. 4.1 and 4.2
and their lines (3) show that the densities of vari-
ance have no significant harmonics. Instead of perio-
dic movements, the average value of these densities is
given as lines (4) in these figures.

Lines (5) in Figs. 4.1 and 4.2 give the ratios of
densities of variance and A values, while lines (6)

show the fitted periodic components of significant
harmonics. It should be expected that a ratio of two
parameters, one with no significant periodic movement
and the other with periodic movement of small ampli-
tudes, would have either small amplitudes, when signifi-
cant harmonics are shown, or would show no significant
harmoniecs. This is the case with lines (5) and (6) in
Figs. 4.1 and 4.2, with relatively small amplitudes of
significant harmonics.

For a Poisson distribution to be applicable to the
distribution of the number of storms in an interval, it
should be expected for the density of variance to be
equal to Al. Their ratios should be close to unity

with no significant harmonics. The results presented
in lower graphs of Figs. 4.1 and 4.2 do not confimm
either of these two expected properties of ratios. The
average ratio is 1.672 for rainy days, and 0.641 for
storms, 4s shown by lines (5) and (6) in Figs. 4.1 and
4.2, respectively. The ratios of fitted periodic com-
ponent of Fig. 4.1, line (0), fluctuate between 1.4
and 2.0, for rainy days, and between 0.58 and 0.70 for
storms as shown by periodic components of Fig. 4.2,
line (6).

Deviations of the above ratios from unity,
which in the case of rainy days are above unity
and in the case of storms are below the unity, may be
the result of definitions of storms used in this study
for the types of data available. In the first case of
rainy days being considered as storms, there are more
rainy days than there are true number of storms. In
the second case of storms being defined as uninter-
rupted sequences of rainy days, the true number of
storms seems to be greater than the number of storms
determined as uninterrupted sequences. In the first
case, the densities of variance of Fig. 4.1, lines (3)
and (4), may be larger than the densities of variance
of the true number of storms. In the second case of
Fig. 4.2, the results may be converse. These differ-
ences between the ratios of Figs. 4.1 and 4.2 are
shown to be systematic, because they appear also in
the other three stations, as shown later in the text.
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Fig. 4.1

of storms in time} for daily precipitation series at
Durango, Colorado, with each rainy day considered as a
storm: (1) computed A values; (2) periodic component

Properties of Ay -parameter (density of number

of significant harmonics fitted to hl values; (3) com-

puted density of variance of the number of storms per
interval; (4) average density of variance; (5) ratios
of the density of variance to Rl, and (6) periodic

component of significant harmonics fitted to the ratio
of density of variance to Al.

As it concerns the second departure from the ex-
pected patterns related t0 the ratio of densities of

variance to the Al-parameter values, the amplitudes of

fitted periodic components for Durango precipitation
data are relatively small. The other stations do not
show these periodicities in ratios at all, so the case
of Durango daily precipitation series and the small
periodicity may be assumed as being a product of sam-
pling variation with the small probability of occur-
rence,rather than to be a systematic pattern.

Figure 4.3 shows that the ratios of the mean num-
ber of rainy days per interval to the mean number of
storms per interval, as defined above, fluctuate in a
narrow band. The mean ratio of 28 interval values is
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Fig. 4.2 Properties of Alwparameter for daily precipi-

tation series at Durango, Colorado, with storms defined
as uninterrupted sequences of rainy days: (1) computed
ll values; (2) periodic component of significant har-

menic fitted to Al values; (3) computed density of

variance of the number of storms per interval; (4)
average density of variance; (5) ratio of the density
of variance to ll; and (6) periodic component of sig-

nificant harmonic fitted to the ratio of density of

variance to Al.

2.034. The average duration of storms, defined as un-
interrupted sequences of rainy days, is about two days.

Table 4.1 shows the main properties of the Al-parame-

ter and of other parameters of the number of storms per
interval for the Durango Station, computed from 28 in-
terval values. Ratios of amplitudes of fitted periodic
components to the means of parameters, as shown in
Table 4.1, vary from 7.4% to 19.6%. For Al, they are

15.4% and 7.4%. Periodic components in ), and in other

1

parameters of the number of storms per interval for
Durango are of relatively small practical significance.
The parameter A is close to being a constant.
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Fig. 4.3 Ratio of Al of Fig. 4.1 (kl for rainy days
considered as storms) to hl of Fig. 4.2 [Al for storms

defined as uninterrupted sequences of rainy days), for
daily precipitation at Durango, Colorado. The average
ratio is 2.034.

The question of the expected value of A*, where
A*
g
intermittent events and not as either the rainy days
or uninterrupted sequences of rainy days, is discussed
in Subchapter 4.6. The fact that the first approach of
definition of storms gives E[Al) = 0,238, and the sec-

are true values of 11, if storms would be given as

ond approach yields E(AIJ = 0.116 points out that E[A;)
should be somewhere between 0.116 and 0,238.

4.3 Daily precipitation series at Fort Collins,
Colorado. Figure 4.4 shows the properties afll-parame-

ter of rainy days as a function of time t, with each
rainy day considered a storm. Figure 4.5 gives the
properties of A -parameter of storms which are defined

as uninterrupted sequences of rainy days. Figure 4.6
shows the ratios of Al-parameter for the first (Fig.

4.4) and the second definition (Fig. 4.5) of storms.

Upper graphs of Figs. 4.4 and 4.5, lines (1),
show Al to clearly follow periodic movements. Only the

365-day basic harmonic is shown as significant in both
figures as lines (2). The oscillations of lines (1)
around lines (2) may be considered as the pure sam-
pling variation., Fisher's tests of significant har-
monics show good fits.

The central graph of Fig. 4.4, line (3), shows
also a periodic movement for the density of variance,
while line (4) represents the fit of the periodic com-
ponent with only the basic 365-day harmonic being sig-
nificant. However, the central graph of Fig. 4.5,
line (3), does not show any significant harmonic in the
density of variance for the second definition of
storms.

TABLE 4.1
PROPERTIES OF Al-PARAMETER AT DURANGO
¢ o i Ratio of
e igrion Expected - Amplltgde_ Amplitude
Parameter of Variance of Periodic d
St oming Value Component to Expecte
Value
) Rainy days 0.238 0.0038 0.0367 0.154
1 Storms 0.116 0.0008 0.0086 0.074
Density of  Rainy days 0.382 0.0034 = -
Variance Storms 0.071 0.0001 - -
E:;;gtitof Rainy days 1.672 0.0965 0.3291 0.196
ek M Storms 0.641 0.0203 0.0612 0.096
“

Lower graphs of Figs. 4.4 and 4.5, lines (5}, give

the ratios of densities of variance to Al values. Lines

(6) give the averages of these ratios. There is no
significant harmonics in these ratios. It meets one of
the basic conditions for the number of storms in an in-
terval to follow the Poisson distribution. The average
ratios are: 1.496 and 0.669, respectively for the two
definitions of storms. These are the same patterns as
for the previous series of daily precipitation. The
same explanations for the average ratios not being
unities in Figs, 4.4 and 4.5, lines (6), may be ad-
vanced as it was done for Figs. 4.1 and 4.2 .,
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Figure 4.6 shows that the ratios of the mean num-
ber of rainy days per interval to the mean number of
storms per interval, as defined for Figs. 4.4 and 4.5,
fluctuate in a relatively narrow range (1.4 - 2.1),
though a periodicity is not excluded. The average
ratio of 28 interval values is 1.76.

Table 4.2 shows the main properties of A -parame-

1
ter and the other parameters of the number of storms
per interval for the Fort Collins Station, computed
from 28 interval values. Ratios of amplitudes of
fitted periodic components to the means of Al-parameter
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Fig. 4.4

the number of storms in time) for daily precipitation
series at Fort Collins, Colorado, with each rainy day
considered as a storm: (1) computed Al values; (2)

periodic component of significant harmonics fitted to
computed hl values; (3) computed densities of variance

Properties of A,-parameter (the density of

to the number of storms per interval; (4) periodic com-
ponent of significant harmonics fitted to the densities
of variance; (5) ratios of the density of variance te

kl; and (6) average ratio of density of variance to Al.

in the two cases of rainy days and storms are 41,3% and
29.7%, respectively. Periodic components in Al are

relatively large, so that A, for the Fort Collins

1
Station is highly periodic. A similar ratio of 35.0%
was shown for the density of variance for rainy days.
It was zero for the density of variance of storms
because it has no significant harmonics.
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Fig. 4.5 Properties of A, -parameter for daily precipi-

tation series at Fort Collins, Colorado, with storms
defined as uninterrupted sequences of rainy days: (1)
computed ll values; (2) periodic component of signifi-

1 (3) com-

puted densities of variance of the number of storms per
interval; (4) the average of computed densities under
(3); (5) ratios of the density of variance to Al; and

1"

cant harmonics fitted to computed A, values;

(6) average ratio of demnsity of variance to A

*®

1
values, in case the storms are given

The question of the expected value of A%, for A
being the true Al

as intermittent events of continuous rainfall intensity
during any storm, is discussed in Subchapter 4.6. As
E[Al] = 0.211 for rainy days and E[Al) = 0,118 for

storms, in the first and second definition of storms,
the expected value, E[Af), of the true number of storms

should be somewhere between 0,118 and 0.211.
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Fig. 4.6 Ratio of A, of Fig. 4.4 {Al for rainy days

1 of Fig. 4.5 [il for

storms defined as uninterrupted sequences of rainy
days), for daily precipitation at Fort Collins,
Colorado. The average ratio is 1.760.

1
considered as storms) and A

4.4 Daily precipitation series at Austin, Texas.
Figure 4.7 shows the properties of Xj-parameter of

rainy days, as a function of time t, with each rainy
day considered as a storm, Figure 4.8 gives the same
properties of hl-parameter of storms which are defined

as uninterrupted sequences of rainy days. Figure 4.9
shows the ratios of A -parameter for the first (Fig.
4.7) and the second définition (Fig. 4.8) of storms.

Upper graphs of Figs. 4.7 and 4.8, lines (1),

show Al to follow periodic movements. Lines (2)

represent the fitted periodic components of significant
harmonics. The sampling variations in lines (1) do not
permit a detection of higher harmonics with a suffi-
cient reliability. Therefore, a small difference in
significant values of g, by Fisher's tests, makes one
higher harmonic included in line (2) of Fig. 4.7 while
another higher harmonic in line (2) of Fig. 4.8.

Central graphs of Figs. 4.7 and 4.8, lines (3},
show no significant harmonics in densities of variance.
The average values are presented in Figs. 4.7 and 4.8
as lines (4). The second central moments which underly
these densities, have a much larger sampling variation
than the first moments about the origin for lines (1)
of Figs. 4.7 and 4.8. Therefore, these differences
in sampling variations may explain why the tests for
the densities of variance may not show the significant
harmonics of periodic component while they show for A
parameter.

1

Similarly for the lower graphs, the ratios of the
density of variance to Al, as shown in lines (5) of

Figs. 4.7 and 4.8, do not have any significant harmonics.

TABLE 4.2
PROPERTIES OF AL—PARAMETER AT FORT COLLINS
" Amplitude Ratio of
Parameter DEflg;tlon Expecrad Variance of Amplitude
Value Periodic to Expected
Storms
Component Value
A Rainy days 0,212 0.0044 0.0874 0.413
1 Storms 0.118 0.0007 0.0350 0.297
De";“y Rainy days 0.312 0.0107 0.1094 0.350
o Storms 0.07 0.0002 - -
Variance
Ratio i =
Density of Rainy days 1.496 0.0874
Variance to Storms 0.669 0.0159 - -
A
1
Lines (6) give the average values of these ratios as to Al of Fig. 4.8, line (1), fluctuate also in a narrow

1.485 for rainy days considered as storms, and 0.672
for storms defined as uninterrupted sequences of rainy
days. The conditions of the ratios of density of vari-
ance to Al not showing any periodicity is fulfilled,

assuming that the number of storms in an interval
follows the Poisson distribution. However, the average
ratios of 1.485 and 0.672 depart from the expected
values of unity, as it was discussed in the two previ-
ous examples.

Figure 4.9 shows that the ratios of the mean num-
ber of rainy days per interval to the mean of storms
per interval, or ratios of ll of Fig. 4.7, line (1),
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band of 1.43 - 2.08. The average ratio of 28 interval
values is 1.764. The average duration of storms,
defined as uninterrupted sequences of rainy days, is
about 1 and 3/4 days.

Table 4.3 shows the main properties of Al-psrsme-

ter and the other parameters of the number of storms
per interval for the Austin Station, computed from

28 interval values. Ratios of amplitudes of fitted
periodic components to the means of A, -parameter in the

two cases of rainy days and storms are 20.4% and 24.1%,
respectively., The periodic components in Al are
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Fig. 4.7 Properties of Al—parameter (density of num-

ber of storms in time) for daily precipitation series
at Austin, Texas, with each rainy day considered as a
storm: (1) computed Al values; (2) periodic component

of_significant harmonics fitted to Al values; (3) com-

puted densities of variance of the number of storms
per interval; (4) average density of variance; (5)
ratios of the density of variance to Al; and (6)

average ratio of the density of variance to A,.

sufficiently large, so that Al for the Austin Station

can be assumed to be highly periodic. No periodic
components are found in other parameters. The expected
value of the true values A; for the Austin Station are

discussed in Subchapter 4.6, as for other stations.

4.5 Hourly precipitation series at Ames, Iowa.
Figure 4.10 shows the properties of A -parameter for
rainy hours, as a function of the time t, with each
rainy hour considered as a storm. Figure 4.11 gives
the same properties of A, -parameter of storms which

are defined as uninterrupted sequences of rainy .hours.
Figure 4.12 shows the ratios of A, -paranmeter for the

first (Fig. 4.10) and the second definitions (Fig. 4.11)
of storms.
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Fig. 4.8 Properties of hl-parameter for daily precipi-

tation series at Austin, Texas, with storms defined as
uninterrupted sequences of rainy days: (1) computed

ll values; (2) periodic component of significant har-

monics fitted to R] values; (3) computed densities of

variance of the number of storms per interval; (4)
average density of variance; (5) ratios of the density
of variance to Al and (6) average ratio of the density

of variance to Al.

Upper graphs of Figs. 4.10 and 4.11, lines (1),

show 11 to clearly follow periodic movements. Only

the annual basic harmonic is present as significant in
both figures, as shown by fitted periodic components of
significant harmonics of lines (2). Neither the densi-
ties of variance, lines (3), nor the ratios of these
densities to A,-parameter, lines (5), demonstrate any

1

significant harmonic in Figs. 4.10 and 4.11. Lines (4)
and (6) give the average values. The patterns and their
explanations are similar to those of the previous exam-

ple for Austin.

The average ratios of the density of variance to
Al, of 8.892 for rainy hours, with each rainy hour con-

sidered as a storm, and of 2.350 for storms, and defined



TABLE 4.3

PROPERTIES OF Al-PARAMETER AT AUSTIN

Definition s Amplitude Ratio of
Parameter of e Variance ?f . Amplitude
Storms Value Periodic to Expected
Component Value
% Rainy days 0.214 0.0015 0.0436 0.204
1 Storms 0.121 0.0003 0.0292 0.241
Density of Rainy days 0.315 0.0045 A "
Variance Storms 0.080 0.0002 - -
Ratio s
Rain 485 0.055 - -
Density of SRy . :
Variance to Storms 0.672 0.0166 - -
A
1
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Fig. 4.9 Ratio of Al of Fig. 4.7 [Al for rainy days

considered as storms) and Al of Fig. 4.5 01 for storms

defined as uninterrupted sequences of rainy days) for
daily precipitation at Austin, Texas. The average
ratio is 1.764.

as uninterrupted sequences of rainy hours, merit a
special discussion which is given in the next sub-
chapter., It relates also to the previous three
examples of Durango, Fort Collins, and Austin daily
precipitation series.

Figure 4.12 shows that the ratios of the mean num-
ber of rainy hours per interval to the mean number of
storms per interval, or ratios of Al of Fig. 4.10,

line (1), to A of Fig. 4.11, line (1), also fluctuate
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in a narrow band of 2.25 - 3.60, except for a value at
the 25th interval (5.22). The average ratio of 28
interval values is 3.11. Therefore, the average dura-
tion of storms, defined as uninterrupted sequences of
rainy hours, is about three hours.

Table 4.4 shows the main properties of A,-parame-

ter and the other parameters of the number of storms
per interval, for hourly precipitation at the Ames
Station, computed from 28 interval values. Ratios of
amplitudes of fitted periodic components to the means
of Al-parameter for both the rainy hours and storms as

shown in Fig. 4.10 and 4.11, vary from 29.7% to 32.1%.
This represents a clear periodicity in Al-parameter at

the Ames Station. As the expected values of A, are
E(llJ = 0,0535 and E[Al) = 0.0175 for the two cases,
the expected value of AI, obtained from the true num-

bers of storms in an interval, should be between these
two expected values. If multiplied by 24, they refer
to Ai per day instead per hour. This item is discussed

in detail in the next subchapter.

4.6 Discussion of ratios of variance to the mean
of number of storms in each interval. Figures 4.1,
3.2, 4.4, 4.5, 4.7, 4.8, 4.10 and 4.11, lines (5),
give the ratios of the variance to the mean of the num-
ber of storms for each interval, with this number as
the random variable. These ratios are identical to
ratios of the density of variance (as given by lines
(3) of these figures) to the 11 values (as given by

lines (1) of the same figures) and for both definition
of storms.

The basic derivation in this paper is that the
number of storms in a sufficiently small interval of
time within the year should follow the Poisson distri-
bution. In that case, the variance and the mean of the
number of storms in each interval should be equal, or
the ratios of the density of variance and Al should be

unities regardless of the position of the small inter-
val., However, because of sampling variations, it
should be expected for these ratios to fluctuate ran-
donly about the value of unity. Out of the above eight
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Fig. 4.10 Properties of ll-parameter (density of num-

ber of storms in time) for hourly precipitation series
at Ames, Iowa, with each rainy hour considered as a
storm: (1) computed ll values; (2) periodic component

of significant hammonic fitted to A, values; (3) com-

1
puted density of variance of the number of storms per
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Fig. 4.11 Properties of Al—parameter for hourly pre-

cipitation series at Ames, Iowa, with storms defined
as uninterrupted sequences of rainy hours: (1) computed
Al values; (2) periodic component of significant har-

monic fitted to A, values; (3) computed density of

1
variance of the number of storms per interval; (4)

average density of variance; (5) ratios of the density
of variance to Al; and (6) average ratio of the density

of variance to Al.



AMES, IOWA hourly values of precipitation, the number of storms as
determined by either of the two definitions of storms
FLE - may be different from the true number of storms.
i The true number of storms is denoted by n . The
£, definition of each rainy day or each rainy hour being
- F considered as storms produce the number of stoms,ni,
a5
t in each interval and for each year. Similarly} nj
g, 1 is the number of storms defined as uninterrupted
i sequences of rainy days or rainy hours in each interval
&:. 33 and for each year. Let denote ni/nk as e and nj/nk
nisg " — as cj. The A,-parameter and the density of variance
;r-!: s = are defined as
-1'2,0 1 3
8] -
& A aene . ™ =t
--1.5 i=1
‘e
) and
5 . = 2
vy = 5T 151 (ng-A,8t)2 , (4.2)
0. E
02 4 6 B 10 12 14 6 1B 20 2 A4 26 28 %
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where n = number of years and At = length of an
Fig. 4.12 Ratio of Al of Fig. 4.10 {kl for rainy interval. By replacing N, L €1k’ St
hours considered as storms) and Al of Fig. 4.11 (Al for
storms defined as uninterrupted sequences of rainy % i 2 i (4.3)
hours) for hourly precipitation at Ames, Iowa. The 1 neat k
average ratio is 3.11.
and
figures for the four examples discussed, only the exam-
ple of Durango daily precipitation series (Figs. 4.1
and 4,2) show a significant periodic component in these £.2 n n
ratios. However, as it was discussed earlier, the vq = ;t (g ! T nsz (4.4)
amplitudes of these periodic components are relatively DR gl nat 41
small. The other three examples and six figures (4.4,
4.5, 4,7, 4.8, 4,10, and 4.11) show these ratios not .
to be significantly different from constants. These The ratio
constants as the average ratios (for Figs. 4.1 and 4.2
also as the average ratios) are not unities as it is n n , 1
expected for Poisson distribution. z -2 2 ! e 2
P o BT Vi sl (ng=d;8¢) kEL (e - 7ot kEl. M)
The explanation for this discrepancy of expected ';q L By = (4.5)
and computed average ratios of the variance to the I n I n
mean should be in the definition of the number of jal * k=1 K
storms. Because data is given in form of daily and
TABLE 4.4
PROPERTIES OF }\I-PARAMETER AT AMES
e Amplitude Ratio of
Definition :
Parameter of Expeitod Variance P ?fdi Amplitude 4
Stccms Value eriodic to Expecte
Component Value
A Rainy hours 0.0535 0.0002 0.0159 0.297
1 Storms 0.0175 0.0000 0.0058 0.321
De“;ity Rainy hours 0.4724 0.0537 - ”
0
variancs Storms 0.0410 0.0003 - -
Ratio of 5
Density of Rainy hours 8,8920 12,6152 - -
Variance Storms 2.3503 0.8800 - -
to Al




or it is ei-times greater than the ratio in the case

of true number of storms.

Similarly, in the second definition of storms,
aj represents the constant to be determined as was €5

in eq. (4.5). Therefore, if € and Ej are computed,

they can be used as average values to reduce the

number of storms, n, or nj, of the two definitions of
storms, or to obtain the true number of storms. Table

4.5 summarizes values of € and Ej for the four

examples in this study.

Designating the true value of A, by li and of

1
vy by v*, then

for the first definition, and ej in eq. 4.6 for the
second definition of storms. The average values, E{kl),

as given in Tables 4.1 through 4.4 for each of the two
cases, are divided by €; OT €, whichever is relevant,

and the average values of A%, E(li))are given in
Table 4.5 computed by

E(),)
E() = 1

2 {4.?)
i
with e, replaced by Ej in the second definition of

storms. In the case of hourly data at Ames, the
average values of E(Ai) are multiplied by 24 and are

given in the last row of Table 4.5, in order to compare

v; i (Vd ) 1 (46 them with E(A;) values for the other three stations.
M s A €5 g - The surprising result is that E(AE] in the first case
is about 0.143, while in the second case it is about
TABLE 4.5
REDUCTION COEFFICIENTS FOR COMPUTATION
e " E(x.) E(%,)
& Precipitation SovE 1 N 1
Station Data i Ej E(Al)- g, E{Al)— Ej
Durango daily 1.672 0.641 0.142 0.181
Fort Collins  daily 1.485 0.672 0.142 0.176
Austin daily 1.485 0.672 0.144 0.180
Ames hourly §.892 2.350 (0.0060) (0.0075)
Ames for kl multiplied by 24 hours 0.144 0.181

0.180, which are very consistent numbers in each case.
An average of the two is somewhere around E(A;) = 0.160.

However, more research should be done on many station
examples before these consistent patterns in the two
sets of E(lij values can be explained. To meaningfully

explain these consistent patterns inE[AI), obtained

for thetwo cases of definition of storms, precipitation
data of continuous rainfall intensities during the
intermittent storms, concurrently with hourly and
daily precipitation data, would be required from
several precipitation stations.

To ebtain the true numbers of storms from daily
or hourly precipitation data, the numbers of storms

per interval should be divided either by €y OF €5

whichever is relevant. In other words, the bias intro-
duced in the numbers of storms, by using the conven-
tional data of hourly and daily precipitation, may be
corrected by dividing these numbers by a constant, e.

29

This procedure is based on the conclusion of Chapter II
that the true number of storms is Poisson-distributed,
with the mean and variance equal.

To test whether the number of storms in an inter-
val is a Poisson-distributed random variable, using
the hourly or daily data, the procedure should be, one
or the other, or both of the above two definitions of
storms should be used. Then the A, -paramter should be

computed, and £y or Ej’ or their mean should be deter-

mined as the average ratio between the apparent number
and the true number of storms. Then all numbers of
storms, computed for each interval and for each of n
years, should be divided by e. The distributions of
the new number of storms should then be tested, whether
they are well fitted by Poisson distributions. The

finite values of AE to be used are the reduced wvalues
* =
of ll Alfa, where Al

daily or hourly rainfall values, and
reduction coefficient.

are computed values from

e is the relevant



CHAPTER V

YIELD CHARACTERISTIC OF STORMS

5.1 Significance and computation of the para-
meter of yield characteristic of storms, The analysis
of six random variables, which are discussed in Chap-
ter II as functions of the stochastic process {Et}'

has shown that some of their distributions are depen-
dent on Az. The parameter 12 is the yield character-
istic of storms given by eq. (2.16) in Chapter II.

The procedure for computing it is in the following
text. The basic conclusion in this analysis is that

the existence of periodicity in the {gt} -process im-

poses a periodicity in the parameter Az , with the
year as the basic period, of Ay depends on time. In

other words, the annual periodicities in the mean, in
the standard deviation and in some other parameters of
{Et} -process, for various intervals of the year, are

reflected also as the periodicity of Az ~-parameter.

This is important because there is often a conviction
among hydrometeorologists that the average water yield
per storm is very close to being independent of seasons

(or of date position in the year). Through 12 all

other random variables, which are functions of {Et} -
process and dependent on A, » should exhibit a simi-

lar periodicity as the parameter A\

5t
Properties of ), -parameter are studied in this

chapter for the four examples of precipitation data
as described in Chapter III, Durango, Fort Collins,
Austin and Ames. Computations of this parameter are
made in four different ways, and in turn for each of
the two definitions of storms, except for the rainy
hours, with each considered as a storm, of Ames
Station. For each interval, the total precipitation
of the first rainy day, after the interval begins, is
determined for each of n years. This gives, for that
interval, a distribution of the precipitation amount
of the first rain, xl , with the expected value,

E(x;).

the first two rainy days, the first three rainy days,
and the first fifteen rainy days, after the interval

begins, are determined for each of n years, as well
as their corresponding expected values, Efsz, E(xs)

and E(xls). For storms defined as uninterrupted

sequences of rainy days or rainy hours, the total pre-
cipitation amounts, xi , of the first storm, the first

Similarly, the total precipitation amounts of

two storms, the first three storms, and the first ten
storms, after the interval begins, are determined for
each of n years, with i 1, 2, 3 and 10, as well

as their expected values, E(xl], E(xz). E[xs} and

E(xlnl.

clear that the 15th rainy day or the 10th storm of a
given interval, as defined above, always fall outside
the corresponding interval, while the third or the
second rainy day or storm often may occur either in-
side or outside of an interval. Even the first rainy
day or the first storm falls sometimes to the right of
an interval, whenever a l3-day interval has no rain.

As intervals are only 13 days long, it is
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This will be evident from the material presented in
Chapter VII.

If the number of storms taken into the computation
of the total precipitation amount x is v =1, 2,

.
3 and 15 for rainy days, and v = 1,2,3, and 10 for
storms defined as uninterrupted sequences of rainy days
or rainy hours, and if the expected value (or the mean)
over n years of these total precipitation amounts
are E(va, then 12 as the parameter describing the

yield characteristic of storms in time is defined by
Ay = (gres)
2 Eixui :
The yield characteristic of storms is inversely
proportional to the average yield per storm, for a
given time of the year. Instead of Ay the use of
However, xz
better various integrals in the distributions of
functions of {&t} -process, like egqs. (2.41, 2.51

and 2.52). 3

the smaller is the average yield of storms. Values of

h, are attached to a position of the year, in this

case to the beginning of each interval, so that it can
be studied as a function of time. By the use of eq.
(5.1) and four different v values, four graphs of

28 values of 12 are obtained for 28 positions with-

in the year. As the four examples of precipitation
data show, the four series of 12 for different v

(5.1)

E{xv)/u may also be feasible. suits

One must be aware that the greater )

values are surprisingly similar in their general pat-
terns.

5.2 Daily precipitation series at Durango,
Colorado. Figure 5.1 shows four graphs of kz

functions of the time t, which are composed of 28
values each representing the beginnings of intervals

of 13 days, for v =1, 2, 3 and 15, in the case each
rainy day is considered as a storm. Figure 5.2 shows
the similar graphs for v =1, 2, 3, and 10 in the case
the storms are defined as uninterrupted sequences of
rainy days.

as

All graphs of Figs., 5.1 and 5.2 are fitted by the
periodic components of significant harmonics through
the use of Fisher's tests. These eight graphs show

that the sampling fluctuations of the computed Az

values about the fitted periodic components decrease
with an increase of wv. For v = 15 in Fig, 5.1 and
v = 10 in Fig. 5.2, the fitted periodic components of
two significant harmonics (12-month and 6-month) have

small differences from the computed Az values. How-

ever, for v =1 in Fig. 5.1, only the 12-month har-
monic is significant, with large sampling fluctuation
of computed 12 values about it, while for v =1 in

Fig. 5.2 no significant periodic component is shown,
though general patterns are similar to those of the
graph for v = 2 in Fig., 5.2 or to those of v = 1
Fig. 5.1, The larger the sampling fluctuation about
a periodic component, the less likely a harmonic be-
comes significant if the ratio of its amplitude to the

in
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mean value is relatively small. Therefore, the larger
a value v the smoother is Ay graph,

Various values Az, computed for v = 15 or

v = 10, are not representative of the initial position
of a given interval, thus creating a bias, because 15
rainy days or 10 storms may be spread over a large
portion of the year and often extend into the next
year. An attractive approach would be to use Az

values of v = 3 - 4. They are a compromise between
the large sampling fluctuations around a smooth curve
of A, for v =1- 2, and a bias resulting from v

being very large, say Az > 5. The Durango data ex-

tend over 71 years, For v = 1, there are 71 values

of 3 in the computation of E(xlj, while there are
15+71, or 10+71 storms in the computation of E(xls}
or E{xloJ, respectively for v = 15 of Fig. 5.1 and

v = 10 of Fig. 5.2. This compromise between the
sampling error and the bias of storms, extended over

a much longer period than the interval length, looks as
an unavoidable dilemma in order to produce Ay -func-

tion of time t with the least sampling error and a
minimum of bias.

Amplitudes of periodic components in Figs. 5.1
and 5.2 are relatively small in comparison with the
average value of Az . The ratios of amplitude to

E(x,) are given in Table 5.1 as well as the other
basic properties of Az.

Parameters of Table 5.1 show the following pro-
perties. Values of E(iz), for v=1, 2, 3 and 15

or v 1, 2, 3 and 10, decrease with an increase of
v, from 5.35 to 4.674, in case of Fig. 5.1, and from
2.372 to 2.30l in case of Fig. 5.2. However, dif-
ferences are small, because the average of four means
of A, are 4,942 and 2,324 respectively for Figs. 5.1

and 5.2. The decrease may be explained partly by the
fact that E(Az) value is the harmonic mean of

E(xU}Zu.

The yield characteristic of storms depends on
how well the storm length is determined, because the
definition of storm duration greatly influences the
total storm precipitation, the greater storm duration,
the greater the total precipitation. The discussion
in Chapter IV has shown that the use of ¢-ratios

changes the number of storms in an interval by changing
their durations. The average number of days or hours
of storms is changed by ¢ in order that they come
close to the average true number of days or hours in
storms.

By using the ratio e,

E{Az)
) = c—— 5.9
5(12) gt (5.2)
with ¢ either € or Ej’ which depends on the de-
finition of storms, the expected value E(x;), as the
true storm characteristic is obtained. As g =

1.672 and
then E(Az}/c are 2.95 and 3.62 as estimates of the

€, = 0.641, respectively for the two cases,

true value E(AE). Differences between 2.95 and 3.62

may be explained in the same manner as differences in
E(AE) have been when the two E{llj have been

divided by €y and ej for the two definitions of

storms. In other words, the storms are of smaller
durations for the first definition of storms, and of
larger duration for the second definition of storms
for daily precipitation series, than are the true
durations of storms. The true value E(AEJ is likely

to be around 3.25 - 3.30.

As E(x ) = v/AZ » E(xU] is then v times the
v i
harmonic mean of 12. Therefore, E(Az} and E(xu].
v=1, 2, ..., are not reciprocal values. This fact,
combined with a smaller fluctuation of X around its

2
periodic component for large values of v, may partly
explain why E(AZJ decrease with an increase of w.

Variances of Az

for each case of the four values of v show a rapid
decrease with an increase of v. It complies with the
expected decrease of sampling fluctuations of Ay

computed from 28 values of Ay

about the periodic component with an increase of wv.
However, this decrease of var AZ, with an increase of

v, may also be partly due to the harmonic central
second moment, as shown by eq. (5.3) in later text,

Ratios E(Az)/a show to be much closer among

themselves for the eight values of E(Az}, in the two

TABLE 5.1
PROPERTIES OF ) ,-PARAMETER AT DURANGO
Figure v E(2,) Variance Amplitude G lE(A,) E(A, )}/e
2 VEQ, 2

of A C

2 A
1 5.350 0.844 0.794 0.150 3.20
2 4.903 0.654 1.139 0.235. ¢ oo 292
Pk 3 4.843 0.555 1.063 0.219 ' 2.90
15 4.674 0.262 0.866 0.184 2.79
i 2.372 0.189 0.000 0.000 3.70
2 2.322 0.157 0.377 0.162 3.63
5.2 3 2.302 0.108 0.488 0.212 %41 3 65
10 2.301 0.065 0.428 0.186 3.59
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cases of Figs. 5.1 and 5.2, because a division by €
forces the two cases closer to the true duration of
storms. Ratios of the amplitudes C, of periodic

component of 12 and the expected value E{Az) is

about 15.0% - 23,3%, This relatively small amplitude-
mean ratio may be the reason why often AZ or its

inverse is assumed to be a constant in practical in-
vestigation of storm yields.

5.3 Daily precipitation series at Fort Collins,
Colorado. Figure 5.3 shows four graphs of A, as

functions of the time t, which are composed of 28
values each representing an interval of 13 days, for
v=1, 2, 3 and 15, in the case each rainy day is con-
sidered as a storm. Figure 5.3 shows similar graphs
for v =1, 2, 3 and 10, in the case the storms are
defined as uninterrupted sequences of rainy days,

All graphs of Figs. 5.3 and 5.4 have been fitted
by the periodic components of significant harmonics.,
The same patterns in fluctuation of Az exist for

this example as for the previous example., The varia-
tion of A, about the fitted periodic components de-

creases rapidly with an increase of v. All eight
graphs show two significant harmonics, both 12-month

and 6-month, and in general the same patterns of 12.
The change of 12 with time seems to be best represent-

ed in cases of v =2o0r v = 3,

Table 5.2 gives the basic properties of 12 -para-
meter at Fort Collins Station. The decrease of E()

with v in both cases of Figs. 5.3 and 5.4 may be
partly explained by the fact that E(AZJ is the har-

monic mean of E(x“)/u. The variation of X, about

its periodic component affects its harmonic mean. This
may be a reason for the average value of E[xu)/u to

be as good or even a better general characteristic of
storm yields as E(Az).

27

The variance of Az

increase of v, also in this example. It is largely a
result of sampling variation decreasing with an
increase of v, about the periodic component. It

may be because the variance of 12 is computed by

decreases rapidly with an

the following expression

28 28 5
S g - b I
2 28,., E(x

var A }
k=l k*v

where Ek[xv) stands for the E(va

k-th 13-days interval. This equation
harmonic mean and the harmonic second

value of the

involves the
central moment.

Ratios of the amplitude C, of periodic com-
ponent of 12 to E{kz) show a good consistency, and

relatively large values in the eight graphs of Figs.

5.3 and 5.4. 1In the first case, they are 34,7% - 49,5%.
In the second case, they are 46.8% - 73.4%. The peri-
odic components in 12 for this example are the im-

portant property. The decrease of CA/E{AZJ with an

increase of v may be due to the definition of X

2)
as the inverse of the average storm yield.

The true expected values of AE , given as E(A;)

= 5(12]/5, vary in these two cases between 3.97 - 4.76,
and 5.08 - 5.56, respectively,

value of 15

The likely average
is around 4.70 - 4.90.

5.4 Daily precipitation series at Austin, Texas.
Figure 5.5 shows four graphs of A, as a function of

time, with v =1, 2, 3 and 15, in the case each rainy
day is considered as a storm. Figure 5.6 shows the
similar graphs for v = 1, 2, 3 and 10, in the case the
storms are defined as uninterrupted sequences of rainy
days.

All eight graphs of Figs. 5.5 and 5.6 are fitted
by the periodic components. They also show that the
sampling fluctuation of Ay about the fitted periodic

components decreases with an increase of wv. All peri-
odic components, except the first one in Fig. 5.6 for
v = 1, have two significant harmonics, both 12-month
and 6-month, while the component of Fig. 5.6 for v = 1
has only a 12-month significant harmonic.

Table 5.3 gives the basic properties of A, -par-

The first four E(AZ)

values seem to slightly decrease with an increase of
v, while the second four E(lz) values seem to fluc-

ameter at Austin Station.

tuate randomly about its mean value. It is a signifi-
cant result that 5(12} of Fig. 5.5 and E{AZ) of

TABLE 5.2

PROPERTIES OF AZ-PARAMETER AT FORT COLLINS

Figure v Eflzj Variance Amplitude cA/E(AZJ € E(AZJ/e
of A [
2 A
] 7.125 6.209 3,526 0.495 4.76
2 6.217 3.564 2.849 0.458 | o 4.18
5.3 3 6.185 3.626 2.805 0.455 1+%96 4 14
15 5.932 1.700 2.060 0.347 3.97
1 3.719 3.143 2.730 0.734 5.56
2 3.654 2.456 2,379 0.651 5.46
S.4 3 3.633 2.213 2.225 0.613 9:96% ¢ 43
10 3.39 0.928 1.588 0.468 5.08
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TABLE 5.3

PROPERTIES OF A_-PARAMETER AT AUSTIN

2
Figure v E(lzj Variance Amplitude CAIE(AZ) € E(Az)/s
of 12 C
3
1 2.639 0.428 0.906 0.343 1.78
5.5 2 2.485 0.305 0.763 0.307 1.485 1.67
@ 3 2.515 0.329 0.831 0.331 4 1.69
15 2.341 0.162 0.596 0.255 1.58
1 1,354 0.153 0.407 0.300 2.02
2 1.417 0.106 0.416 0.294 2.11
5.6 3 1.389 0.082 0.383 0.276 9572 307
10 1.348 0.045 0.314 0.233 2.01

Fig. 5.6 change little with the change of wv. This may
be explained by somewhat smaller variations of Az

about its periodic components than in the previous
cases.

The variance of 12

for Austin. The amplitudes of periodic components are
relatively large, and their ratios to E[kz) range

from 23.3% to 34.3% or between 1/4 - 1/3, which is a
significant variation. As Az are much smaller be-
tween the 11th and 23rd 13-day interval than for the

other intervals, the storms during these intervals
have the largest water yields.

rapidly decreases with v

The use of c-factor gives the true expected values,
E(Aa), which range between 1.58 - 1,78 for the case of

~Fig. 5.5, and between 2.01 - 2.11 for the case of Fig.
5.6. The true value E(AE) may be somewhere between

1.80-1.90. This is less than one half of the correspon-
ding value for the Fort Collins Station. In other
words, storms at Austin have more than twice the aver-
age storm yield than at Fort Collins.

5.5 Hourly precipitation series at Ames, Iowa.
Figure 5.7 gives four graphs of xz as a function of

time, with 1, 2, 3 and 10 for the case of storms
defined as uninterrupted sequences of rainy hours. The
study of each rainy hour being considered as a storm,
like it was done for RI' is not carried out for Az.

v =

All four graphs of Fig. 5.7 are fitted by the
periodic components. For v = 1 and v = 3 only the
12-month harmonic is significant, while for v = 2 and
v = 10 both the 12-month and 6-month harmonic is sig-
nificant. The 6-month harmonic in Fisher's test for
95% probability level was, in these four cases, close
to the critical value Bg» with two of them a little

greater and two of them a little smaller.

Table 5.4 gives the basic properties of AZ -par-

ameter at Ames Station, but only for storms as defined
above. Both the expected values of 12, E{AZJ. and

the variance of X, increase in this case with an

2

increase of wv. These variations in E(lzj and var 12

among the four graphs may be of random nature, be-
cause it is likely that most of these storms happen to
occur within the 13-day interval. The amplitudes of
fitted harmonics increase with an increase of v. The
ratio CA/E{LZ} is very high, 43.7% - 65.1%, which means

5 The
values of E(AE], obtained by eq. (5.2), range between

the periodicity in A, is its important property.

2.64 - 2,94, which are relatively consistent values.

This reversal of the trend of E[lz) and var 12 with
an increase of v for hourly data may be eventually
explained by two additional factors: (a) the sample

size in this case is n = 18 years, while n = 71.69
and 70 in the previous three examples, and (b) the
definition of storms in this case of hourly precipita-
tion may bear on these results.

TABLE 5.4
PROPERTIES OF lz-PARAMETERS AT AMES
Figure v E(3,) Variance Amplitude B fEEAL ) 3 E(rh,)/e
2 A 2 2
of A c
2 A
1 6.241 8.453 2.72% 0.437 2.66
2 6.215 9.482 3.995 0.643 = 2.64
=7 3 6.548 9.240 3.403 g5 B 2.79
10 6.917 11,001 4.502 0.651 2.94
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The time function of A,-parameter (yield characteristic of storms) for Ames, Iowa, with each storm
defined as uninterruptéd sequences of rainy hours.

The four graphs relate to the number of storms,

which are used in computing A2 (up to l-st storm, up to 2-nd storm, up to 3-rd storm and up to 10-th

storm), and related to an interval.

5.6 Ratio ll/zﬂ. The ratio of the two parameters,
<~

A, and )A,, represents the mean precipitation in the unit

i i
time interval, because
Alt
E{:r.t)u}\1 > (5.4)
where t = the interval length, or
ii i E[xt]
A, t (5.5)

The mean precipitation in the unit time interval is
called the density of precipitation in time in the
text that follows.

The comparison of Figs. 5.1 and 5.2 with Figs.
4,1 and 4.2, lines (2), demonstrates the significant

harmonics of 32 and Al periodic components at

Durango Station not to be necessarily in phase. This
may be because the amplitudes of periodic components

37

and AZ

and E(A,). Therefore, the parameters g

in Al
with E[Al)
of significant harmonics may be close to the critical
value of 8. The line (2) of the lefthand graph of

Fig. 3.1 is equivalent to eq. (5.4), with t = 13 days,
but it has the same shape as the ratio 11/A2 of eq.

(5.5). It shows a small amplitude of a complex peri-
odic component of the density of precipitation in time.

are all relatively small in comparison

The comparison of Figs. 5.3 and 5.4 with Figs.
4.4 and 4.5, lines (2), for Fort Collins Station shows
the significant harmonics of 12-month for X, and 11
“

to be out of phase. This means the large )\, has a

1

small counterpart in A As the average storm yields

2

are the inverse of A,, this means that large densities

2,
of storms in time have at the same time, or approxi-
mately so, the large values of the average storm yield.

The fact that A, and A, are out of phase at Fort

Collins Station explains a very large amplitude in the



line (2) of lefthand graph of Fig. 3.2 for the mean 5.7 Closing remarks. The above four examples
A

precipitation over 28 intervals. of properties o o -parameter, as it change within
the year, demonstrate clearly that the average storm
When periodic components of ll and 1, are out vield depends on seasons. The eventual contention

of phase, there is a large amplitude of periodicity in thet l‘MZ -values, as the average storm yields, are

the density of precipitation, if AI and 12 are not significantly different from a constant, is not

sufficiently periodic. If the periodic components of confirmed by the above four examples.

A, and A, are in phase, it decreases the amplitude

of perodic component in the mean precipitation. There-

fore, it is possible to have Al and 12 with signif-

The method of computation of Ay by using the
first v storm for each interval with v =1, 2, 3,...,

and for each v by obtaining 12 as a function of
icant periodic components, but the density of precipita- g
tion in time may not show a significant periodicity. time t, poses the problem of which J‘2 “Eraph; Shanid
The density of storms in time and the average yeild of be used. For small v, there is a great sampling
storms in time may have compensating periodic compo- variation of computed A, about the periodic component.

3 ; il 2
nents to produce non-periodic densities of precipita- For large v, the bias is unavoidable because many
tion. H

storms do not pertain to the position of the interval,
though they are v sequential storms after the inter-
val begins, The suggestion in this study for using

either v = 3 or v = 4 needs further study, and this

The comparison of Figs. 5.5 and 5.6 with Figs.
4.7 and 4.8, lines (2), demonstrate a difference both
in the shape and phases of periodic components of X

1 problem needs to be investigated for a large number of
and A, parameters for Austin Station. The ratio of stations. As an indirect and practical approach, the
A /)y, as equivalent within the multipling constant of Ay ~parameter should be computed by using eq. (5.4),
13, to'the line (2) of the lefthand graph of Pig. 3.3, | %
shows a relatively complex periodic movement for this At
station . (5.6)

: 2 "B ,

The comparison of Fig. 5.7 and Fig. 4.11, line
(2), for the storms at Ames Station, with the storm
defined as uninterrupted sequences of rainy hours,
demonstrates a significant shift in phases of the Az

and Ay
31112 is then very high, which is confirmed by the
lefthand graph of Fig. 3.4, line (2).

The main objection in this latter approach is the
fact that A, may have a large sampling fluctuation

which is automatically transferred to X The sampl-

2
ing fluctuation of E(xt], about its true periodic

significant 12-month harmonics. The ratio

component, should be relatively small, as E(xt) is

the first moment of interval precipitation amount. The

Basically, the density of precipitation in time next objection may be the problem with the definition
is decomposed in two factors, the density of storms of storms, imposed by the availability of data in form
in time, Al. and the yield of storms, 12. This of hourly and daily precipitation. This gives either

shorter or longer duration, and therefore also either
smaller or greater total precipitation of individual
storms, than would be the case if data are given as the
intermittent storms, each with the recorded rainfall
intensity hyetograph.

approach provides more insight into the structure of
stochastic-probability process of storm precipitation
than the classical statistical parameters, as they
change with the year.
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Chapter VI

PROBABILITY DENSITIES OF STORM PRECIPITATION

6.1 Definition of storm precipitation. The func-
tion, X, of the stochastic process {Et} is defined as

the total precipitation for v storms, in a sequence
of storms. The probability density function of Xv is

derived in Chapter II and presented by eq. (2.52). The
integral in that equation for X, =0,

X
ho(o,x) = £ A, (s)ds (6.1)

represents the average number of storms necessary to
produce the precipitation amount X. The question
arises of how 12 should be determined; by the use of

v storms, which are close to the number'nx of storms

which produce the precipitation amount X, or by any
other value wv. Four values of v were used in the
previous chapter for the computation of Ay

For all practical purposes and for a relatively
small value of X, hzto,xj of eq. (6.1) is AZX. For a

given time position, 32 can be considered a constant.

Therefore, /i, is proportional to X. In that case,

eq. (2.52) is a gamma distribution. The best estimate
of Az, as discussed in Chapter V, should be used in

computing the integral of eq. (6.1) for a given time
position within the year.

The other alternative in computing Ay is to always

use v storms, with v & number close to Ny when-

ever the probability density function of a given Xv

is investigated as in Figs.5.l1 through 5.7 This
second alternative is used for the comparison of the
theoretical probability density functions of X,

given by eq. (2.52), with the empirical frequency den-
sity curves of the four precipitation series, described
in Chapter III.

642
of storm precipitation.
precipitation amounts XU, for v

Computations of probability density functions
Uistributions of the total
1, 2, 3 and 15, are

studied for storms defined as each rainy day, by using
eq. (2.52) and AZ values of the three examples (Durango,

Fort Collins and Austin) as given by Figs. 5.1, 5.3
and 5.5. These investigations are carried out for the
four time positions of the vear: (1) January 1; (2)
April 1; (3) July 1, and (4) October 1, as the repre-
sentative dates of four annual seasons. In summary,
for the first definition of storms, for the three
examples of series of daily precipitation at Durango,
Fort Collins and Austin, and for the above four
seasons of the year, the theoretical probability den-
sity functions are determined for X » with four cases

1

-
3 =

v 3 and 15. The X, values used are the com-
4

puted values of \,, of Figs. 5.1, 5.3, and 5.5, and not
the values of the fitted periodic component.

39

For a stronger test of how the theoretical proba-
bility density functions fit the frequency density
curves, the use of AZ values from the fitted periodic

components should be a better approach to use because
it partly avoids the sampling fluctuations in Az.

The above four time positions are based on the
assumption that the n, storms, which produce the total

precipitation amount X,» are centered around the first

day of January, April, July and October, respectively.
The values 12 at those dates are used in the computation

of au[x) of eq. (2.52) which is the probability density
function of Kv'

Similarly as for the total precipitation amount
Xv of rainy days, with each rainy day considered as a

storm, the probablity density functions are determined
for Xv of v storms, with storms defined as uninter-

rupted sequences of rainy days, or of rainy hours in

the case of Ames Station, with v = 1, 2, 3and 10, and for
January 1, April 1, July 1 and October 1, respectively.
These four dates represent in general lines the four
annual seasons.

6.5 Computations of frequency density curves of
storm precipitation. Frequency density curves of the
total precipitation xv are determined for the following

cases.:

(1) For rainy days, each considered as a storm,
for v 1, 2, 3 and 15, for the above four time
positions, designated as Season-1, Season-2, Season-3
and Season-4 in all figures, and for the three examples
of Durango, Fort Collins and Austin daily precipitation
series,

(2) For stomms, defined as uninterrupted sequences
of rainy days or rainy hours, whichever is relevant,
for v = 1, 2, 3 and 10, for the same above four time
positions, and for the four examples of the Durango,
Fort Cellins, Austin and Ames precipitation series,

For the first definition of storms, Figs. 6.1,
6.3, and 6.5 each give these 16 empirical frequency
density curvesof Xv (the four values of v =1, 2, 3,

15, and each of them for the four seasons). For the
second definition of storms, Figs. 6.2, 6.4, 6.6, and
6.7, each give these 16 frequency density curves of Xv

(the four values of v = 1, 2, 3, 10, and each of them
for the four seasons).

6.4 Comparison of theoretical probability density
functions with the empirical frequency density curves
of storm precipitation. This comparison is given in
Figs. 6.1 through 6.7, in which the solid lines refer
to the computed frequency density curves, while dashed
lines refer to the theoretical probability density
functions.

It is usually customary to compare the theoretical
probability distributions with the empirical cummulative
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frequency distributions, rather than to compare the
density functions with the frequency density curves.
The fact is that the comparison of distribution looks
better to an eye, than the comparison of their density
curves. This can be seen best by comparing the graphs
of figures in this chapter, in which case the density
curves are compared with the graphs of figures in the
following chapters where distributions are compared.

The eye inference is often misleading and un-
avoidably represents a subjective decision. A compari-
son of two curves, one theoretical and another empirical,
may look as good to one person and very bad to another.
The objective statistical inference by using the
parameters and tests of hypotheses is the only proper
way of comparing theoretical and empirical curves.
Because readers are often accustomed to drawing their
own conclusions, the graphical presentation is given
in this paper, rather than the tables of chi-square or
any other statistic, as the results of statistical in-
ference tests. As mentioned in Chapter III, this is
not an exhaustive study of a large number of stations,
with a statistical analysis performed of how the vari-
ous theoretical distribution functions of precipitation
stochastic process fit the empirical distributions. It
is rather a development of methodology, with the four
examples used to illustrate its potential usefulness.
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Figures 6.1 and 6.2 refer to Durango, Fig. 6.3
and 6.4 to Fort Collins, and Figs. 6.5 and 6.6 to Austin
daily precipitation series for each of the two defini-
tions of storms, respectively. As the number of years
of data is 71 for Durango, 69 for Fort Cellins, and
70 for Austin, those are also the sample sizes of the
empirical frequency density curves (solid lines) of
Figs. 6.1 - 6.6. Differences between the theoretical
probability densities and the empirical frequency den-
sities are smaller for Durango and Fort Collins than
for Austin. Figure 6.7 refers to Ames hourly precipi-
tation series. The sample size is 18 years only. This
small sample explains why differences between the
theoretical probability densities and the empirical
frequency densities are much greater for this station
than for the other three. The use of hourly data in
the case of the Ames Station may further explain why
these differences are so large.

In summary, the gamma distribution of eq. (2.523,
with AZ(o,x] of eq. (6.1) assumed to be proportional

to X for a given A, and a given position in time,

seems to well fit the empirical distributions of the
storm precipitation amounts.



Chapter VII

PROBABILITY DISTRIBUTIONS OF TIME OCCURRENCE OF STORMS

7.1 Definition of time occurrence of storms. If
a storm is defined as a rainy day or a rainy hour, the
lapse time from the beginning of an interval to that
rainy day or rainy hour is its time occurrence. If a
storm is defined as uninterrupted sequence of rainy
days or rainy hours, then the lapse time from the begin-
ning of an interval to the last rainy day or last rainy
hour of that sequence is its time occurrence. If t,

stands for the time when the observation begins, then
T, denotes the end of v-th storm. The difference

Ty S is called the lapse time of the w-th stomm.
For tog = 0, Ty is the lapse time.
The probability density function of T,

by eq. (2.48). The following integral represents the
average number of lapsed times in (to,t]

is given

t
Ay(ty,t) = { A, (s)ds (7.1)

]

and it is Ai(t*to) only if hl is a constant with time.

7.2 Computation of theoretical probability dis-
tributions of lapse time, T, Assuming that E is

defined by dates of the year, in the examples of this
study, four values of t, are taken as four seasons:

January 1 (Season-1), April 1 (Season-2), July 1
(Season-3) and October 1 (Season-4). Then for any
value %, t, the various terms of eq. 2.48 are deter-
mined from Al
examples and presented in Chapter IV.

-time functions, as computed for four
The computed A

values are used rather than their values from the
fitted periodic components. This latter case should
be used whenever some sampling variations in A, should
be avoided.

The term Altt) in eq. (2.48) is the computed 1

value at the time t. The term in eq. (2.48), given
by eq. (7.1), is the integral from the beginning of

the above dates and various values of t. This pro-
cedure is used for v = 1, 2, 3 and 15 for the first

definition and for v = 1, 2, 3 and 10 for the second
definition of stomms.

The theoretical probability distribution functions
(as integrals of eq. (2.48)) are given for the four
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examples of precipitation data (Durango, Fort Collins,
Austin and Ames) as light solid lines in Figs. 7.1
through 7.7 as explained in the captions of these
figures.

7.3 Computation of empirical frequency distri-
butions of lapse time, T, Frequency distributions of

lapse time Ty

, given in all figures as heavy solid

lines, are determined for the following cases:

(1) For rainy days, each considered as a
storm, for v = 1, 2, 3 and 15, and for the above four
time positions Lo designated as Season-1, Season-2,

Season-3, and Season-6 in all figures, and for the
three examples of Durango, Fort Collins, and Austin
daily precipitation series.

(2) For storms, defined as uninterrupted se-
quences of rainy days or rainy hours, whichever is
relevant, for v = 1, 2, 3 and 10, and for the same
above four positions of Ty and for the four examples

of Durango, Fort Collins, Austin, and Ames precipitation
series.

For the first definition of storms, Figs. 7.1, 7.3,
and 7.5 each give these 16 empirical frequency distri-
butions of S (the four values of v = 1, 2, 3 and 15,

and each of them for the four seasons). For the second
definition of storms, Figs. 7.2, 7.4, 7.6, and 7.7 each

give these 16 empirical frequency distributions of Tt

(the four values of v = 1, 2, 3 and 10, and each of them
for the four seasons).

f theoretical probability distri-
Frequency distributions of lapse
Lson in Figs. 7.1 through 7.7

7.4 Comparison o
butions and empirical
This compar

time, 7 .
shows a good closeness of theoretical and empirical
curves, though this is not studied by tests of appropriate
statistics of goodnesss of fit. The exception is Fig.
7.7, for the hourly precipitation data at Ames, because
the sample is small, only 18 years.

In conclusion, eq. (2.48) gives a good distribution
of 1, provided A is well estimated as a function of
The values of Al
should be used instead of the computed values of A

time. from the periodic component

1
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FIG, 7.2 COMPARISON Of THE TH.EDRETICRL PROBABILITY DISTRIBUTION (LIGHT SOLID LINES) AND THE EMPIRICAL FREQUENCY DISTRIBUTIONS (HEAVY SOLID LINES) OF THE

STORM LAPSE TIME, r., FOR THE FIRST STORM (RAINFALL, 1-ST STORM, FIRST COLUMN), FOR THE FIRST TWO STORMS (RAINFALL, 2-ND STORM, SECOND COLUMN) ,

FOR THE FIRST THREE STORMS (RAINFALL, 3-RO STORM, THIRD COLUMN), AND THE FIRST TEN STORMS (RAINFALL, 10-TH STORM, FOURTH COLUMN),AND EACH OF
THEM FOR THE FQUR SEASONS (OR TIME POSITIONS): JANUARY 1 (SLI(SLJN 1, FIRST ROW), APRIL 1 (SEASON-2, SECOND ROW), JUL\‘ 1 (SEASON-3, THIRD ROM],
AND OCTOBER 1 (SEASON-4, FOURTH ROW) OF DURANGO DAILY PRECIPITATION SERIES, WITH STORMS DEFINED AS UNINTERAUPTED SEQUENCES OF RAINY DAYS.
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FIG. 7.3  COMPARISON OF THE THEORETICAL PROBABILITY DISTRIBUTION (LIGHT SOLID LINES) AND THE EMPIRICAL FREQUENCY DISTRIBUTIONS (MEAVY SOLID LINES) OF THE
STORM LAPSE TIME, Tor FOR THE FIRST RAINY DAY (RAINFALL, 1-ST RAIN, FIRST COLUMN), FOR THE FIRST TWO RAINY DAYS (RAINFALL, 2-ND RAIN, SECOND

COLUMK), FOR THE FIRST THREE RAINY DAYS (RAINFALL, 3-RD RAIN, THIRD COLUMN), AND FOR THE FIRST FIFTEEN RAINY DAYS (RAINFALL, 15-TH RAIN, FOURTH
COLUMN ), AND EACH OF THEM FOR THE FOUR SEASONS (OR TIME POSITIONS) JANUARY 1 (SEASON-1, FIRST ROW), APRIL 1 {SEASON-2, SECOND ROW), JULY 1
(SEASOM- 3 THIRD ROW), AND OCTOBER ) (SEASON-4, FOURTH ROW) OF FORT COLLINS DAILY PRECIPITATION SERIES, WITH STORMS DEF!NEI} AS EACH RAINY DAY.
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FIG. 7.5 COMPARISON OF THE THEORETICAL PROBABILITY DISTRIBUTION (LIGHT SOLID LINES) AND THE EMPIRICAL FREQUENCY DISTRIBUTIONS (HEAVY SOLID LINES) OF THE
STORM LAPSE TIME, .+ FOR THE FIRST RAINY DAY (RAINFALL, 1-ST RAIN, FIRST COLUMN), FOR THE FIRST TWO RAINY DAYS (RAINFALL, 2-ND RAIN, SECOND

COLUMN ], FOR THE FIRST THREE RAINY DAYS (RAINFALL, 3-RD RAIN, THIRD COLUMN), AND FOR THE FIRST FIFTEEN RAINY DAYS (RAINFALL, 15-TH RAIN, FOURTH
COLUMN ), AND EACH OF T'IEM FOR THE FOUR SEASONS (OR TIME POSITIONS): JANUARY 1 (SEASOM-1, FIRST ROW), APRIL 1 (SEASON-2, SECOND ROW),JULY 1
(SEASON-2, THIRD ROW), AND OCTOBER 1 {SEASON-4, FOUATH ROW) OF AUSTIN DAILY PRECIPITATION SERIES, WITH STORMS DEFINED AS EACH RAINY DAY.
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FIG. 7.6 COMPRRISON OF THE THEORETICAL PROBABILITY DISTRIBUTION (LIGHT SOLID LINES) AND THE EMPIRICAL FREQUENCY DISTRIBUTIONS (HEAVY SOLID LINES) OF THE
STORM LAPSE TIME, ¢ , FOR THE FIRST STORM (RAINFALL, 1-5T STORM, FIRST COLUMN), FOR THE FIRST TWO STORMS (RAINFALL, 2-ND STORM, SECOND COLUMN),

FOR THE FIRST THREE STORMS (RAINFALL, 3~RD STORM, THIRD COLUMN), AND THE FIRST TEN STORMS (RAINFALL, 10-TH STORM, FOURTH COLUMN), AND EACH OF
THEM FOR THE FOUR SEASONS (OR TIME POSITIONS): JANUARY 1 ESEASDN 1, FIRST ROW), APRIL 1 (SEASON-2, SECOND RDW), JULY 1 (SEASON-3, THIRD ROW),
AND OCTOBER 1 (SEASON-4, FOURTH ROW) OF AUSTIN DAILY PRECIPITATION SERIES, WITH STORMS DEFINED AS UNINTERRUPTED SEQUENCES OF RAINY DAYS.
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Chapter VIII

DISCUSSIONS OF RESULTS AND CONCLUSIONS

8.1 Discussion of .results. This study refers to
the intermittent process of precipitation storms, with
continuous precipitation intensities £, >0 whenever

it rains or snows, at a given point. Such a series,
when available, gives maximum information on the pre-
cipitation process at a given precipitation gauging
station. However, the precipitation time series of
very small time units, say 10 minutes or less, are
rarely available, and the instantaneous intensity as a
function of time during storms is even more rarely
available.

The original design of precipitation observation,
the development of instrumentation, and the hydro-
meteorological services for precipitation observation
have been oriented to produce discrete time series with
precipitation amounts referred to calendar time units.
The precipitation data is available, in general, either
as data referring to the hour or multiples of an hour,
to days or multiples of a day, to months or multiples
of a month, or to the year. Any approximation of a
continuous time series by a discrete series means a
loss of information. This loss increases with an in-
crease of the time interval over which the precipitation
is integrated or averaged. Therefore, the data cur-
rently available on precipitation always has a lesser
or greater loss of information when compared with the
continuous intensity series of intermittent process of
storms.

The stochastic process of precipitation is treated
without any basic assumption about the character of
this process from the probabilistic point of view. How-
ever, two phenomenological basic hypotheses, based on
experience, are made. First, the process is intermit-
tent, with continuous values £ > 0 whenever it rains

or snows. Second, the process is periodic, with the
year as the basic period.

The mathematical and mathematical physical descrip-
tion of the stochastic process of precipitation can be
treated by two approaches. The first approach is when
the multivariate distribution of the process is found
and is mathematically expressed. Then it is described.
This approach poses several problems. However, it is
not a difficult task to accomplish, if the process is
made discrete with sufficiently long time intervals of
discrete values. The second approach is to select
various characteristics of the process as its descrip-
tors. These characteristics being functions of the
basic process and also random variables describe the
process. The problem at hand determines which charac-
teristics should be selected for this description. Six
such characteristics being the random variables of the
process have been discussed in the previous text.

Distributions of selected characteristics treated
as random variables can be developed mathematically
under a minimum of basic phenomological assumptions.
The probability distributions of six characteristics
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studied are functions of two basic parameters which are
deterministic in character: Al, as the density of storms

in time, and Az, as the yield characteristic of storms.

They are constants if a process is stationary. In the
process investigated in this study they are determinis-
tic and periodic in the four examples.

It should be stressed that many other character-
istics of the basic stochastic process of storms can
be found to be probabilistic in nature with their dis-
tributions dependent on 3 and Az parameters, and func-

tions of time.

8.2 Conclusions. The following conclusions are
drawn from this study:

1. The parameters of RI

periodic functions of time, and they follow general
periodic patterns of the basic parameters, such as the
interval means and the interval standard deviatioms.
The density of precipitation, defined as the mean pre-
cipitation of an interval divided by the interval
length, is the ratio 11/12.

and Az are deterministic

2. The use of ll and kz gives a better descrip-
tion of the character of precipitation (with AL the
number of storms in a time unit, and Ay the inverse of

the average yield per storm at a given time of the
year) than the means and standard deviations of indi-
vidual intervals.

3. The use of hourly and daily data for the defi-
nition of storms either over-estimates or under-esti-
mates the number of storms per time interval. This
indirectly affects the estimates of time duration of
storms.

4, The number of storms in a time interval is
Poisson distributed, if storms are properly defined.

5. The empirical distributions of the total pre-
cipitation for a given number of storms closely follows
the theoretical distribution function derived in this
paper.

6. The observed lapse time, for the given refer-
ence time of the year, of the first, second, or any
other storm counted from that reference time, closely
follows functions developed in this analysis.

7. The use of precipitation series in the form
of hourly or daily values, or values of similar units,
represents a loss of information about storms. The
use of a much smaller time unit with discrete precipi-
tation values or the use of continuous intensities
during the storms may be important in the case of esti-
mates relating to such problems as floods from small
watersheds.
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APPENDIX A

Proof of 2.21:
By the definition (see 2.9)

t < Tj*l}

It is easy to see that it can be written as follows:

Efu.t 8, Tt} - fn,.; €€}
J J = Il =
or
P(EFa'tJ = P{r. <t} - P{1, , <t}
j Ji= Jel =

Taking the sum from j = 0 to j = v - 1 of the left and
right side of the last equation,we have

v-1 to,t v-1 v-1
L P(E )= & Plr. <t} - ¢ P{T.+] < t}
j=o j=o0 j=1
= P{r, <t} - Pz <t}
Since P{1o <t}=1 and F‘{-r\J <t} = Fv[tj’ the

assertion follows.

Proof of 2.22:
Suppose that the following conditions are satisfied

t,t+ht

E P{E )
. =2
(a) lim LS a 0 t >t
At+o At -0
P{Et,t+at]Eto't}
& 1
(b) i::o 73 =11(t,v) t > to

v=1, 2, ... , then (2.22) follows.

Let us first consider the following relation:

v=1 to,t*ﬁt
F (tedt) = 1 - I P(E, ) =
jeo
v-1l j
1= I P(E A gt
" jworso 1" ¥

then on the basis of condition (a) we have
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v-1 ot e
F (t+dt) = 1 - T P(E N gttt
v o
j=o
v=1l -
- I PG, ° n E?’“M) + o(At)
j=1
Hence
dF (t) v-1 of t,t+At to,t
_._a___u.Jiop(E - E, ﬂEj )
v-2 t ,t
- £ PBY N MY 4 o)
jeo 7 .

By virtue of the following relation

t,t+ t t,t+At
(B’ U E.’
=1
It follows
dF_(t) v-1  t,t
Y—ot= I P{Ejo n {52""‘“)‘]
j=o0
v-2
= & P(E n E"*t*“) + o(At)
j=0
= P(E n E} T4 4 ofat)
= P(E °1 ) P(E;* ™45, ‘; }+ o(At)

which proves the assertion.

Proof of (2.33) and (2.34) is identical to the
proof of (2.21) and (2.22), respectively.

Proof of 2.43:
Let n(to,t) stand for the number of stomrms in

CEB) Kam
o -

.t
o
P{n(to,t} =y} = Ev

then
n{toat"'bt) = “(tolt) + n(t,t+At)

Taking the mathematical expectation of the left and
right side of the relation, we obtain

E{n(to.t+bt] = E{n(to.t)} + E{n(t,t+at)}

and the assertion holds.

In a similar way one can prove (2.44).



APPENDIX B

Proof of (2.48):

By virtue of (2.32) we have

o t t
E(r) = F%'J{ € A,(s) exp{-{ J\l(s)dsl({ Al(s}ds)“'ldt
o [+] (o]

After partial of integration, it follows that

o t t
3‘”5%1'{ A () exp{-{ Alr_s)ds}[{ A (s)ds) " Hae »
[+]

o
[} [§] X&

L ¢ - t
B = ) {m:i-{ A (e)s)( M ()ds)" aree(r )
o o o

Hence

Similarly

= t
E{TV)-E[Tv—l]i EE%T;T { Al{t)exp{-{ AI(stS} i
o . o

t
v=-l 1
({ Ay (s)ds) ™" < 3=

5 1
Therefore
1 1
x—s.E(T\,J - E(t,_y) 15
1
v 1 W v 1
I —=< E [E(r,) - E(r._lJ] L
1% Tasv J i=1 21

Since E[To) = 0o we have

<E(r) <

> |¢
.L:v-lc

1
and the assertion holds.

In the same way, one can prove (2.59).

Loy t
E(r) - E(r ;) = T%U} {exp{-f AIESst}({ 11(s)ds}“'1at
(¢} +]
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APPENDIX C

Proof of (2.69):

Fo(x) = é EP{x, ix]n{to,t)}dp

when EP{xt < x}n(to,t)} denotes the conditional proba-

bility with respect to the random variable n[to,t).
Since

“[toat)
X, = L z, + X
t T k o
we have
= n(t,,t)
Fo(x) = I J’t e PUE 2 <x- x [n(t ,t)}dP
V=0 E o k=0
v
- v
= I jt " Pl Z <x- x°|n(t°,t)}dP
VO L0 k=0
v

Tt

because on the set Evo the random variable n(to,tJ =

v. After integration

t

&
pix_ < x|E °
v - v

,t t
0
} P(Eu )

=
S

V=0

F.(x) =

Since
L 4
(X, < x}= Uec.°

j=v 7

ik
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ol
L 3

= xo,x
P{UGJ. N E

F.(x)= "
% v= i=y

o

© w XX t,t
£ T P(ci° NE®)
v=0 i=v b

=

Proof of (2.70):
X
If one assumes that Gi

23

n Tt ,t

and Evo
events for all i = 0,1, ... and v = 0,1,

are independent

+++, then
@ @ X s X .t
F.(x) = £ I P(G ) P(E )
t o ia ] v
v=0 j=v

If in (2.32) and 2.41) we set Al(t) = Al = const. and

Az{x) = 12 = const. and t, =X, =0, we obtain

X (e ax (x)Y
o,t 1 1 . 0,X 2 2
P(E,’") = o T 8 PETY=e Y]
Therefore
Voo j
65 ; ; e—llt [llt) . lzx (lzx)
= v Co]
t v=0 i=v s i
-0t = @ ()Y (a0
ol AL s ol

v=0 i=v

and the assertion holds.
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Abstract: The continuous process of precipitation intensities,
E, 20, is investigated through the study of probability distribu-

tions of six descriptors: number of storms in an inverval of time,
number of storms producing a given amount of precipitation, lapse
time between a reference time and the end of a storm, the total
precipitation of v storms, the precipitation of v-th storm, and the
total precipitation in a time interval. The parameters 11, as the

number of storms per time unit, and 12 as the inverse of the average

yield per storm, are derived as periodic functions of time inside the
year. The comparison of derived theoretical probability distributions,
which are functions of Al or 12, and the observed frequency distri-

butions for the four examples used in the study, is shown to be good
in the light of inevitable sampling errors.
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