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A General Computational Form for a Class

of Nonlinear Systems lIncorporating Both Spectral

and Finite Difference Approximations

by
F. Baer and R. L. King
Colorado State University

ABSTRACT

It is shown that a general class of nonlinear partial
differential equations--including those frequently used in
predicting atmospheric motions--can be converted to compu-
tational form by either the "finite~difference" or "spectral"
method to yield formally identical equations. These computa-
tional equations are then reduced to matrix notation and the
nonlinearity (of arbitrary order) is shown to be expressible
as a bilinear form. Finally, a method is described whereby
these bilinear forms--quadratic forms in the case of even
nonlinearifty--may be readily programmed and calculated on a
digital computer.






- Intfroduction

Traditionally, information available about the behavior
of a physical system which could be represented by a set of
differential equations was deduced from the linear form of
such equations. Those systems in which nonlinearity pre-
dominated were largely ignored, primarily because no analyti-
cal tools were available for their solution. The development
of the digital computer with its large memory and high-speed
calculation capability was instrumental in directing attention
to nonlinear problems; this instrument has the capacity for
solving nonlinear systems numerically.

With reference to the problem of weather prediction,
the basic mathematical equations which represent atmospheric
flow are fundamentally nonlinear. Thus, this science lay
dormant until computing technology advanced sufficiently to
stimulate research and experimentation. A classic example
of the frustration which inadequate computation facility could
cause is vividly described in the work of Richardson (1922).
The promise which modern computing technology offers is
evident from the fact that weather forecasts are currently
being supplied by numerical solution of mathematical repre-
sentations in many weather centrals around the world; and this
development has taken place in less than ftwo decades.

A considerable amount of research effort has been
expended fto bring the state of numerical forecasting to its
present point; a large but unknown amount must yet be employed
to extend our knowledge and capability. Such effort should be
directed toward a better understanding of the physical aspects
of the problem; wherever possible, mathematical aids should
be available to the investigator so as not to deter or distract
him from his search for better physical insight. It is the
purpose of this paper to present such an aid.

Once a set of differential equations is established

to describe a physical system, a method of representation



N

must be selected to define the values of the dependent

variables as a finite set of numbers*. Two such methods
are currently applied to weather prediction systems. One--
the more popular--involves the transformation of the dif-

ferntial equations to finite difference equations and is
applied to a finite set of points in the space under con-
sideration (space domain). The method was employed in one

of the first calculations of numerical weather predictiocon

by Charney, et al. (1950); is being used in research investi-
gations of the general circulation of the atmosphere by

Leith (1965), Mintz (1965), and Smagorinsky, et al. (1965);:
and is the method utilized in routine daily weather pre-
diction by the Numerical Weather Prediction unit of ESSA.

The other method--frequently referred to as the spectral
domain method--involves the expansion of the dependent
variables in a finite series of space-dependent funcfions
(known) and time-dependent coefficients (unknown). Space
derivatives are then evaluated by operation on the known
functions and the entire system is integrated over the
specified domain. The original set of differential equations
is thus reduced tfo a finite set of differential equations
in tThe time-dependent coefficients only. This set of coef-
ficients corresponds (from the computation point of view)
to the time-dependent set of point values established by
the first proposed method. The spectral approach has been
employed in weather predictfion models by Silberman (1954),
Bryan (1959), Baer (1961, 1964), and others.

It is not the purpose of this discussion to argue the
relative merits of these methods, a question which has already
been considered by Ellsaesser (1966). Rather, it is the
writers' purpose to establish a general representation and

computation scheme which is applicable to either method.

¥*Clearly this is necessary because the computer requires
a finite time for any one calculation; thus it would require
an infinite time to establish the continuous variation of
any variable.



In all the numerical models which have been reported, the
authors have devoted substantial effort fo representing
their equations for computation; it is our hope that in the
future this effort will be obviated.

Although emphasis has been placed on systems of equa-
tions representing atmospheric flow--reflecting the writers'
backgrounds--a representation will be presented which covers

a broad class of differential equations. Needless To say,

any physical system which can be described by these equations

may benefit from the representation.

Consider now a system involving the set of N dependent

variables QJ B

wherein the dependent variables are related by N differn-
tial equations in both time (+) and space (r .- the positive
vector). Let us further assume that the nonlinearity of the
system involves only space-dependent differential operations
on the dependent variables. When the dependent variables
exist linearly, they may be operated on by both time- and
space-dependent operators. We thus consider the general

class of N equations,

=1 K, N
M - Cr.
Zk = I r o F (e )
m=| rm =1 u ,m,i,k i
Here Rk ] is an operator in both time and space, whereas
F n is an operator in space alone. The parameters
Uosm;i:k

u, s and I are defined as follows:

T
m
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We note that u" is a vector describing the dependent
0
variables @S which are involved in any nonlinear product;

i
since each operator F operates only on one dependent varia-

ble @S , tThe index |1 serves to isolate that variable from
i

the vector Ug . The order of the nonlinearity is determined

by the value of m . Thus (l.1) allows nonlinearity to order

M. I|f the same set of variables as specified by ”2 are

involved in more than one product, a summation over another

index would be needed to include all such terms; i.e., we would
need Flm i F2m , etc. This possibility offers
Uo)m;i:k onm:irk

no added complication, and we consequently make no symbolic
reference to it. Subsequent examples will exemplify this
situation. Should a system yield terms with nonlinear products
which are not integral, an expansion would have to be performed
to make the terms conform to the representation of (Il.1).

It is tThe purpose of the subsequent discussion to show
that the system (l.l) can be converted either by spectral
expansion or by finite difference means to a computational
representation which can be easily applied to digital computing
procedures, provided an assumption in the numerical time infe-
gration is made. Only space fruncation will be considered
here. Several examples with meteorological emphasis will be

developed to exhibit the utility of the method.



2. Representational similarities of space and spectral

domain methods

We shall show in this section that subject to defini-
tion, equation (l.1) can be put into a representation which
is identical for both the finite difference and spectral

truncation methods. Let us first, however, simplify the time

and space operator Rk g Discounting ftranscendental
operators, one may generally write,
L
Ry «2 & T, o 8 « & (2.1)
K, J =) KyJsi K,j,i
where Tk j,i is an operator in time alone and Gk j,i is
¢ > ? 2
an operator in space only. |f we introduce (2.1) into (I.1),
we have the N equations
I N
? J£|Tk'Jiin’J’i(¢J) = Zk (@1,-~',®N) (2.2)
where Z is defined as in (1.1).

k

Finite-difference method: To solve equation (2.2)
numerically, one must assign values to the dependent varia-
bles, QJ , at discrete points in space. Customarily, the
domain of interest is broken up into a three-dimensional
lattice and the variables are assumed known at the inter-
section points of the lattice. |f one numbers these points,
the association of this number with any dependent variable
specifies the variable's value at that point. It is not
essential that the different variables &. be known on the
same grid; i.e., a different grid may be assigned fo each
variable. Thus we shall define the point number for any

¢, as . where
J LN ’



(@)}

and the value of the function ®J (in principle continu-
ously distributed in space) is given by the set of numbers

(¢j . ); this set is, of course, time dependent.
J o2 \j

We see that by breaking the continuous function into a

discrete set, we also generate n equations in the Time-

k
dependent quantities 9k . from each of the Kk differential
7Tk N
equations (2.2), resulting in £ n, equations in the same
J=1
number of variables ¢J v, * We shall for future reference
T
define
N
L= & n, - (Z:.3)
J

These equations cannot be written explicitly in terms
of the variables ¢ . until a finite-difference operator
7
is substituted for each space differential operator. The
finite~difference operator may depend on all the grid values

of the variable as follows:

n.
J
(6, . . (¢.0] = ¢ a, . . 9. : (2.4)
KyJad " J 7Y = Kods®ps¥ys 1 TJs0y
The coefficients "a" in the above equation will be determined

from the choice of the finite-difference procedure to be
applied. The more common of such operators involve only the
near neighbor points to the point in question; only those "a's"
for which aJ represented the near neighbor points of Yy
would be nonzero. We shall see subsequently from an example
how the fields of "a" are selected. Equation (2.4) is appli-

cable to the left-hand side of (2.2); a similar development is

used in the function Zk of (Il.1). | £

[Fuz,m,i,k(¢s.)jy = Tlagm i ) ¢ ; (2.5)



where the finite-difference operator may or may not be the
same as in equation (2.4),% we may combine the nonlinear

terms to yield

m m
I Fm . @ ) =3 (1 ¢ i) I.m m(k,y, ) (2.6)
f=1 MgrMeiokomsyt o gm TS aag - TR e
0 |
with
m
Ixm,um (k,yk) = 1 apm,m,i,k,a‘ . . (2.7)
0 =1 "y s k

Rather than writing out the product of sums, a single sum

has been written to be taken over all variations of the

vector A" = (0! ,a2 ,a3 ,---,am ) where the range of each of
0 S1° S2° S3 Sm

the oa's s given as | < a, <. . This is clear from

the substitution of (2.5) into the product on the left-hand

side of (2.6). The vector “g has been defined previously
in £1.2)

Spectral method: In this method it is not necessary to
establish discrete values of the dependent variables; one
assumes the space dependence fto be given by known polynomials
in space and each variable is expanded in a series of time-
dependent coefficients multiplied by the known polynomials.
For computation purposes, the series must be finite, and
thus truncation is introduced. |f for each variable &,
there are nj coefficients (the truncation point), we may
write

n

J .
. = ¥ ¢. (t) P (r) {2.8)
J =1 JsO. o
a.=| J J
J
where Pa are the space varying polynomials (known) and
J
the ¢J y are the coefficients (time dependent) of the
5O,
J

¥1f the finite-difference operators applied to the same
equation differ for different times, serious computational
stability problems may occur. This is not within the domain
of our discussion here.



series. Note That the ¢. 5 of this discussion are not
5 %
J
the same physical quantities as those of the finiftfe-difference

discussion although symbolically they are identical.

It would be desirable to select the polynomials P as
the characteristic function of the linearized form of the
differential equation under consideration (l.1), but such
functions may not often be available. Furthermore, iT would
be desirable, but not essential, that the polynomials be
orthogonal on integration over the domain of inferest. On
substitution of the expansion (2.8) info (2.2), we still
have N differential equations in both time and space, but
we have increased the number of dependent variables to L
(see 2.3), The number of equations may be increased fto the
number of dependent variables and the space dependence may

also be removed if each of the k equations is multiplied

successively by PY and integrated over the space domain,
k

where Y, goes over its entire range, I < Y 2Ny o Thus

each of the original equations yields Ny equations which

are time dependent only.
Consider the space operation on the leff-hand side of

(2.2). Using the expansion (2.8),

GK,J.’E(CDJ.) = 2oy (D)6 (P
o; J J

Multiplying by P$ and integrating (the asterisk denoting
k
the complex conjugate),

/6, . .(d.) P¥ do = I a, . .0 (2.9)
k’J" J Yk OLJ' k»J:aj:kal J,OLJ'
where
a . . = G . L (P ) eP¥* do (2.10)
k:JJOLJ',Yk)| KyJ,i U-J‘ Yk



A similar procedure may be applied fto the function Zk of

(1.1). We substitute (2.8), multiply by Pt and integrate
K

to yield
m m
IglFuS,m,i,k(Qsi) N ig(igl¢si’a;i) IA%’“? (K, v, ) (2.11)
where
m
Ix?,u?,k,yk ) fileuZ,m,i,k(Pu;') Pikdc (2,)2)

The vectors xg and u? have the same meaning as those used

in (2.6) although the range of the indices a; must be
i
established from the series given in (2.8).

We are now in a position to convert (2.2) into a set
of equations which are only time dependent in the variables
¢j,a. For the finite-difference method we substitute (2.4)
on T%e left-hand side and (2.6) on the right-hand side; for
the spectral method we first multiply (2.2) by P$ and inte-
grate, then substitute (2.9) on the left-hand sidekand (Za113
on the right. Either of these procedures leads to the fol-

lowing equation:

N n.

P 5 T b )
. . a A . =
1 f=1 n, =1 Kyj,i Js%; k,J,dj»Yk,l
J
" - (25130
: L[z Zm(.§ ¢S.’a! ) Ikm,um (k,yk)]
m=1 T A i=l i’7s. 0’ 0
m 0 |

Thus we see that the computational form of the general dif-

ferential equation (2.2) is representationally identical for

both the finite-difference and spectral methods. This simi-

larity allows for the development of a general computation
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scheme applicable to either method. It is only necessary to

note the definitions of the dependent variables ¢j q (T) and
) O,

the constant coefficients "a" and "I" as defined by (2.4,2.7)
or (2.10,2.12) respectively for the finite-difference or

spectral methods.

3w Reduction of terms involving the ftime operator

We consider now a simpler representation of the spatial
truncatio: of our differential equations which is applicable
to either the finite-difference or spectral method. We have,

(¢ . ) =B (3.1)

z Ehy : = < O :
i . KyJsi J’OLJ- k,J’u\j,Yk" k’Yk

z
J GJ

where B is defined as the right-hand side of (2.13).

Let us now define a column vector QJ which includes all
the ao. elements of ¢ for a given j ; these may be either
the point values of the variables or the expansion coefficients

and will be written

. = {¢. } (3:.2)

with dimensions (nJ x I). A composite vector, including all
the vectors of fthe different dependent variables will be

defined as x and written
X = {QJ} £35,3)

of dimensions (L x ).
Consider now the following matrices involving the time

operators Tk,j,i 3

—
1

I. ;7T 2

K,j,i = Tk,j,i 58 T o s e s w ow W e (3.4)




Here the matrices Ij are unit matrices of dimensions

(nJ X nj) and consequently the Tk N are of the same
> ’
dimensions. Since tThe matrices Tk . oare generated as
2
diagonal matrices with Tk i, on the diagonal, their
> >

dimensions are (L x L).
Finally, let us define a column vector of elements

@ . in which the elements are listed varying most
k,J;@J,Yk:'

rapidly on aJ and least rapidly on j . This vector will

be writfen as a

k}')'}Yk’l

ak)':Z:Yk,i

a ’ ;

[ P i

A = {a, . '} = 2 Yk (3.5)

k:Yk)l k)"a"Ykil a

J k,2,|,yk,i

a ’ .

k!NJnN’Yk)'

Clearly the vector has dimensions (L x 1).
If we introduce the definitions (3.2), (3.3), (3.4),
and (3.5) into (3.1), we have the form,

. : = B (3.6)
k,Yk’I Tk,l X k,Yk

I A

|
where the tilde represents matrix transposition. The elements
of "A" are known either from (2.4) or (2.10), and therefore
the matrix "A" may be combined with the time operator matrix
Tk,i to yield a modified matrix. Furthermore, since X does
not depend on the index i , the operator matrices may be

summed over this index fto yield

Tk:Yk = ?Ak,Yk,i Tk,i (3.7)
a time operator matrix of dimension (I x L). |If we now write
a vector which has as elements Tk,Yk over all k,yk , varying
Y most rapidly, and write a similar vector made up of the
elements B as follows:

k,Yk



T = {Tk } ; B = {Bk } . (3.8)
’Yk ’Yk
T having dimensions (L x L) and B having dimensions (L x 1),

(3.1) is finally reduced to the matrix equation
TX = B(X) . £3.9)

Since the function B is generally a non-linear function
of the dependent variable x , an analytic solution for ¥
as a function of time usually can not be found. We fherefore
resort to a numerical solution of (3.9) in time. |f we break
the time axis into increments of At and assume that inifial
values are available at some time TO (consider To = 0 for
simplicity), we may write a finite-difference equation fo
replace (3.9) at any time t = pAt. Let us select an explicift
extrapolation scheme (Richtmyer, 1957), although this is not
essential. We shall assume that the time operator T at any
time pAt will predict x[(p+1)At] from all the previous
values x(jat) (j<p) which have been calculated and are known.
Thus,

o+ 1
(TP = T 1y Ciat) (3.10)
i=0 P!

where the matrices Tp ; are functions of the matrices

a _— (Eq.3.7) and At (the time truncation interval) and
? k)

the method of truncation employed. Because we have selected
an explicit method, the right-hand side of (3.9) will be
evaluated at pAt in terms of known quantities. On the

assumption that =t is non-singular, we may substitute

p,ptl
(3.10) into (3.9) and solve for x[(p+1)at] , the unknown.

The resulting finite-difference extrapolation equation

becomes,

|
xClp+)AT] = - T 1

s p,p+|Tp,iX(IA+) +

£3.11)

=1
3 Tp’p+l BLx(pat)]
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The first term on the right-hand side is easily calcu-
lated since it is linear in x and all the x's are known
up to pAt . The second term involves the nonlinear products

of x at pAt . To establish the value of each element

of the vector x at pAt , we see that it will depend upon
all the values of the dependent variables ¢j i for all Time
)0
increments computed in a linear sense, plus a linear combination

of all the nonlinear forms at pAt . We thus have the general

form,
L( YAt] ; U ¢ (iat)
¢ p+ldatf = ¥ T I ; o i +
k:Yk i=0 J GJ p)J:aj’k;Yk:' ,ad
(3. 12)
+ I Iv_ . B. [x(pat)] .
3w, Poda®iaKerda®y
d

where "U" and "v" <can be determined from the matrices of
{3u11d.

It is important to note that the dependent variable can
at any time be determined (not including Ilinear terms) by a

|inear combination of nonlinear products--the functions

Bk . --calculated at the preceding time step. We proceed
b
k

now to simplify the representation of the functions Bk v
»
k

4, Reduction of nonlinear terms

We have seen from (3.12) that the value of each scalar

dependent variable ¢. - can be computed by a linear combi-

2

nation of the nonlinear products "B" as defined by the
right-hand side of (2.13) and written

m
i . (4.1)
im( E b ol )Ixm’um(k,yk)]

| i’"s.
m* o i 0 0

B = B(k,y,)
k}Yk l'\ m



|4

We note that for m=l +the terms are linear in the ¢.
$ |

and are easily calculated. We shall thus direct the 1‘01:I
lowing discussion to terms with m>! . For notational
simplicity, we shall suppress the indices k,yk , although
it shall be understood that the I's of (4.1) depend on
them.

Before proceeding with this development, let us establish

some definitions which will prove useful in the sequel. Con-
sider the vector x as defined in (3.3). The matrix ¥
will be defined as a matrix with zero off diagonal elements

(in dimensions of x ) and the vector x as diagonal ele-
ments. The dimensions of each element of this matrix will
be the dimensions of x and the dimensions of the mafrix in
terms of its elements will be square and of order L ,

the number of scaler elements in x . Thus,

L
————e
‘X 0 ° ° e O
O X ° ° o O
i = ° ° ° ° ° ° ° L (4:-28)
O ° ° ° X
and
L
——
X 0 « ¢ 0
0 x = =0
):(- = ° ° ° ° ° ° ° L (4‘2b)
0 o« » i
etc. Since x is a vector of order (L x 1), % will be of
order (L? x L) in the scaler elements ¢. . The bar opera-

50 s
. J

tor as defined by (4.2) may be applied to a vector (say x )
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as many times as necessary, and we shall abbreviate this

multiple operation by the notation,

-}k times
-k B
X =X (4.3)
Clearly, ik has dimensions (L 'x L%).
The matrices developed by sucessively increasing the
bar operation on x may be mulfiplied; such a product will
be defined for convenience as
m
U, = T X t=k
k=1
(4.4)
U = I
o)

Care must be taken to perform the multiplication subject to
consistency rules for matrix multiplication. However, the

multiplication may be performed in reverse if the matrices

are transposed. This may be seen from the following two

identities:

(4.5)

I >R
il
>

X = X X ; (4.6)

>

Both identities are apparent from the definition of the bar
operator (4.2a) and the definition for transposition of
matrices. Eqgs. (4.5) and (4.6) may easily be extended for an
arbitrary number of bar operations.

Finally, let us define vectors with dimensions identical
to ®J and x but with unift eIemeTTSi
K1
K2

|
|

K.z Y'f n,; k= L (4.7)
|

X eoo

\ 4 N /
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Quadratic products: We consider now a part of the non-
linear product (4.1) which involves only the quadratic
product of the dependent variables ¢j . which we shall

5 0%
denote as J

(>
(13

LT ¢ 1 ¢ > I.m m(k,y, ) . (4.8)
2 5132A§ Sl;asl 52’a52 AO,UO K

Note from the definition of A following (2.7) that
2 = (al ,0% ) as used in (4.8). For given dependent
0 1 2
variables represented by s; and sy , we may sum over all

elements ¢ _ Cti for the quadratic product to get the
i77s,

s o s
matrix representation

0 =3z o (I.m mbo . (4.9)
A S
2 5132 1 2: 0 2
Here @ and o _ are vectors defined by (3.2) and I
1 2

as used in (4.9) is a matrix made up of the elements I

given in (4.8) as

I.m m={I.m m} (4.10)
A, U

0 0 0

with dimensions (nSl X nsz). Since the interaction matrix

defined in (4.10) is independent of aé and ag , we assign

the subscript on X +to indicate the number of indices by

which Az has been reduced; i.e.,

5 O
2 S3 Sy S

We now develop a matrix of dimensions (L x L) which is made up
of the sub-matrices defined in (4.10). Since this matrix will
have elements depending on the values of (sj,sp), we may assume
that for each product of (4.9) only the element corresponding

to (s1,s2) will be nonzero. Thus,



0 oo 0 ee 0
*m m = 0+« Im m=+-0 (4.11)
A2,H0 AQsHQ
0 o= 0 e 0
Because all elements except (s;,s,) in (4.11) are zero, we

may replace the appropriate @S with x (defined by Eq.
i
3.3) in (4.9) and using (4.11) arrive at the equation

Q =3 I $(IXm m)x . S 1

2 S155 A2sH0

Finally, since x is independent of (sj,s»), the summation
may be made over all matrices of the type (4.11) to yield the

complete matrix

£z [ m+ IXm m] . (4.13)
Ao,u2 € 5132[ Ao ,H0 A2,Up

—
3
3
"

Note that since the matrix 1 m 1is no longer dependent

m
A2,H2
on (s;,s5), the subscript of u has been incremented to

indicate the number of degrees of freedom by which u@ has

been reduced. From the definition of u in (1.2),

Ug (Sg,Sq,"',Sm).

This matrix has also been made symmetric to avoid confusion,
an operation which may be justified by noting in (4.12) that
Q2 is a scalar. By introducing (4.13) into (4.12), we get

the matrix form of Q2 ,

m) x : (4.14)
2
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Cubic products: We may express a cubic product of
(4.1) by multiplying Q2 by another dependent variable
(denoted by s3 ) and taking the appropriate sums. This
yields

Q3

1
™
-
w
L)
N

= I I $I.m m (4., 15)
¢ gxxzzx

- S3 S3 a:3 3,0
Unlike the quadratic case, this equation depends on only one
dependent variable, s3 . However, we may simulate the method
applied to the quadratic case by generating a square matrix
of dimensions (n53 X nss) with only diagonal elements and
defined as

iI(l)X O ° o ° e o 0

0 STLTFy & & ol
H m m = ° ° ° ° ° ° ° ° ° ° ° (4.'6)
A3,U2
0 0+« « « gxIn_ )X
with A? = (a% ,a ---,am ) and I(j) = I.m m(ad =j)
sy’ 'sg’ Sm Ag2,u2 S3

Substituting (4.16) into (4.15) and introducing the vector
with unit elements defined by (4.7), (4.15) becomes

K (H.m m)e (4.17)

The subsequent development follows by analogy to (4.11) and
(4.13). Develop a square matrix in the elements H (defined
by 4.16) with only one non-zero element, a diagonal element
at the location (s3,s3) and with dimensions (L x L) in the

scalars Qo ;



Substitution of (4.18) into (4.17) allows the use of the

vector K (Eq. 4.7) and x *to yield

= kK(z HXm m)
Q3 3 20, X

The summation of matrices implied in (4.19)

matrix of order (L x L) with only diagonal

Q2 developed for quadratic products;

is premultiplied by § and postmultiplied by

the definition of the bar operator (Eq. 4.2a),

write this sum

z KX = X ( )X
S Ag;ug & IA?)U? X
3
where
I(I,I) 0 ° ° O
0 L(2,1) - e 0
= 0 O «
IX?:U? I(ns3,l)
0 O ° ° O
0 O ° ° ° O

X

(4.18)

(4.19)

leads to a square
elements, the terms

each of these elements

By using

we may thus

I(nS

3

s N

(4.20)

(4.21)
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m = o 0 o 1 = 3 =1 =
Here u3 = (sy,ss, ,sm) and I(j,k) = ng’ug(a53 J,53 k).
Note that I m is symmetric since it is made up only of

m
A3,U3 )
matrices on its diagonal which are themselves symmetric, and

has dimensions (L2 x L2). Utilization of (4.20) together
with (4.19) leads to the final form for the cubic product,

03 = K $(I.m m¥% x (4.22)

Quartic products: The quartic product may be expressed
from (4.1) by using Q, (Eq. 4.14) and two extra dependent
variables,

Qu = Z Z & Q20 3 ¢ y =
SgSqX; 53’053 Sholg
(4.23)
= I I I ¢ xI,m m x
g § Y 539a3 Sh’ugqx Ao2sU2
3 4 2
where Aj = (ag3,agq). The development now follows identically

the development for the quadratic case with Qz(xg,u2> replacing
I

m m . We first establish a matrix similar to (4.10),
AosHO

with dimensions (nS3 X n54)' Next we expand on these matrices

to create--similar to (4.11)--an augmented matrix of dimen-

sion N x N in the I m defined as 1Xm m with only

%T,uz Ay,u2

one non-zero element in location (s3,sy). Noting from (4.12)
that ¢S3, QSH may be replaced by x in (4.23), the sum-
mation over s3,sy may be applied to this newly created
matrix and it may furthermore be made symmetric in a fashion

similar to (4.13). We now observe that each element of this
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matrix is premultiplied by % and postmultiplied by x ,

allowing us to extract these vectors by using the x defi-

nition (Eq. 4.2a). We therefore have,
= " o % Xm m o+ IXm m] (4.24)
X(IAT’HT)X 5 §3§HEIXT,uz 5,0

Following the above procedure, Qy becomes

= - (4.25)
O = Ry W
or, using the definition for Um (Eq. 4.4),
Qu = Uptl;m  mils (4.26)

and the matrix Ikm um has dimensions (L2 x L2) in the original
LUy

scalar quantities of (4.1).

The procedures outlined above lead to straightforward
generalization for arbitrary products; it is only necessary
to separate the odd from the even products, since they result

in slightly modified forms.

Even products: We may consider all even products of
(4.1) by letting m = 22 . Following the procedures of

quadratic and quartic products, we find that

24
Qog = Z ¢ ¢ (T ¢ i) I.m
S1 Spga2% i=1 %iv%s Ao

(4.27)

= U (I )
e 0,00, e

where I.m m is a symmefric matrix of dimensions (Lg X Lz)
AagsM2y
in the scalar quantities I.m m
AosHo
0dd producTs: For odd products it is only necessary

to apply the technique for even products and then use the method

for cubic products. Letting m = 22+]1,
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= + =
Q2,9.'i'| SZ 522+|QZZ¢522+I,G§2 I
20+1%5, 28+]1
(4.28)
= k0 (I.m m )0 x .
Y FURL I FR R
and Ilm m is a symmetric matrix of dimensions
20417 2041
(L % 1%y 15 the vartables Im m

0>H0O

We may now combine the results of this section (4.27 and
4.28) to give a general matrix expression for the nonlinear

terms of (l.1) as represented by (4.1) which becomes,

ML
B(k,y, ) = £ [U(I.2m 2m)U_ +
k a8 Azm’“Zm m
(4.29)
+KO__ (I.2m=-1 _2m-1DT__ U]
m- Aam=17¥omoy M1

I f the reduction of the left-hand side of (l.1) requires
the summation of all the elements B(k,yk) for each variable

(¢ ), the summation may be performed on the interaction
J,a

matrices "I" before time extrapolation begins as is seen from
(3.12) and (4.29) as follows:

nm<

T IV B(j,a.) =
; m 2m™m
Jj o

U II
j’a',k,Y J [U I U +
i J k |

m

(4.30)
KU I e U Yy

I (k,y,) = TV, I.am 2m(j,a.)
2m K Q. J,ujyk;Yk Azm’uzm

X
. J

It is important to note that the general nonlinear product

can be represented as a quadratic form for even nonlinearity

and a similar representation for odd products. The matrices
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U, can be calculated from their definition at any time,

and the matrices "I" are known (and remain constant) for all
+ime once the basic equation and the space and ftime frun-
cation have been established. We shall show subsequently,
how (4.29) may be calculated in a straightforward manner.
Moreover, a program for performing such calculations on a

high-speed digital computer has been developed.

5's Example |: Finite difference method

For a demonstration of the finite-difference method

representation of (l.1), let us consider the set of equations

representing atmospheric flow and sometimes referred to as

the "primitive equations." We shall assume a representation

in cartesian coordinates (x, y, z) with The horizontal motion

in a tangent plane (a plane tangent to the earth at some

latitude) and vertical motion normal to this plane. The

physical system will have no external heating (adiabatic)
and the usual--and generally highly acceptable--hydrostatic
approximation shall not be made. The basic system may be
written,

3V - = = =

3T = «~ VvV - 28xV - aVp —‘gk

2% - - Veva + aveV (5

5t ¢ T y

2P = - % P g.¥

X VeVp + ==Y )

Here V represents the three-dimensional wind vector with
components (u, v, w) in the three cartesian directions
expressed by the unit vectors (i, j, k). & is the rotation
vector of the earth with constant magnitude @ and compo-
nents (0, 2Q cos 6, 2Q sin 6), where 6 is the latitude of
tangency, p and o are the pressure and density, respec-
tively, g is the constant acceleration of gravity, and «

is Poisson's constant.
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In this system there are five independent variables,

N =5, and they may be represenfed by QJ as follows:

L]
1}

(u, v, W, a, p)
(5.2)
j =, 2, 3, 4, 5)

It is immediately apparent that no reduction of The
l.h.s, of this system of equations is necessary as we may see

by writing the operators defined by (2.1),

= = il
Tk,j,i - Tk,j,l R
£5.3)
B, : + = By = 8§, .
k,j,i Kiyd sl k,J
Scrutiny of the right-hand side of (5.1) shows that
M =2 ,; i.e., we have both linear and quadratic terms. The
operators F.m ’ for this system are listed in Table I.

Xogsm,i,k
| f more than one set of operators appears in the table, all
the sets must be applied to the dependent variables and the
results added. This condition represents the multiple products
of operators involving the same variables as discussed following
(1.2). 1f we moreover add the inhomogeneous term g , Table |
together with (5.2) and (5.3) may be used to give the repre-
sentation of system (5.1) in the form (l.1).

We now show how this example may be expressed by sub-
stituting finite-difference operators for space differentials.
As pointed out in Section 2, we must establish a grid of points
at which the dependent variables are to be evaluated. For
simplicity, we shall assume that all the dependent variables

are known at the same set of points. Furthermore, The sepa-

ration between points will be the same in each horizontal
layer, and these layers will be equally spaced. Thus an
arbitrary point with coordinates (x, y, z) will be found in

t+he finite-difference net aft,



0 0 0 0 0 0 0 0 0 0 (6°6)
0 0 0 0 ze/e f= Ae/e | = xe /e | - (¢%)
0 0 0 0 0 0 0 0 0 0 (v %)
aer VS o 0 0 0 0 0 0 0 (6°¢)
0 0 TS T A T 0 0 0 0 0 (r¢)
0 0 0 0 ze/e f = 0 0 0 0 (¢¢)
_NM“M >wmmw 0 0 0 0 0 0 0 0 (6‘2)
0 0 >w\mv wmmw 0 0 0 0 0 0 (v2)
0 0 0 0 Aeyse | - == ze/e 0 0 (£2)
0 0 0 0 0 0 Ae/e | = 0 0 (2°2)
IR BRI B 0 0 0 0 0 0 0 (6“1)
0 0 xm\mw x%mmw 0 0 0 0 0 0 (v
0 0 0 0 xe/e | - 0 0 | - ze/e (c1)
0 0 0 0 0 0 Xe/e B j- Aey/e (z1)
0 0 0 0 0 0 0 0 Xe /e | = (ren)
Z=| | =1 z=1 | =1 z=1 I=1 Z=1 I=1 z=| I=1 Ll
¥ ¢ z =
(z1=1 ‘z=w) A1 E

o|duexg eousJoJtiiQ-o+1Uld 40} sJofeasdQ aoeds

I ®lqel
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(0 0 6 0 0 ) - juetsuol
0 0 0 0 0 S
0 0 0 0 0 %
0 0 0 0 9 S0° 5 zZ- ¢
0 0 0 0 o uls Bz z
0 0 o S09 B¢ o uis uz- 0 !

1

G y ¢ z _ N\s
\_N 01.
(=1 =y TR
PonuUI{UC) - | o1qel
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X = pAx = pAs ; Yy = gAy = qAs ; z = rAz

0 <p<P-l ;0<qg=<0Q-1; 0<r <R-I

or we may refer to the location in fterms of the indices
(xg,¥0,20) » (p,g,r). Since we wish to identify each poinft
by a single index (the number y ), we define (p,g,r) by

tThe relation
v(p,q,r) = PQr + Pq + p + | (5.4)

Thus each point is uniquely indexed and the total number of
points will be PQR. The value of any variable at the point

Yy will be ¢J » where we include the subscript on «y to

?

indfcafe the dependent variable to which reference is made.
Since there are N = 5 dependent variable functions, the
total number of discrete variable quantities is L = 5PQR
(see 2.3),

The finite~-difference representation of the non-linear
terms follows the procedure outlined in Section 2. Let us
select as a representative example the two entries for
Wi = (1,4), k = 4 from Table I. From the Table, (I.1) and
K225 ;

3%y + QHEEL =

FL2 2,1,4(°1)Fu§,2,2,4(¢“) = =015 3%

-

¥ e 4l +
u2’2’1’4’a1’Y4¢,’a1 Zau2:2:2:4,a2)Yh¢4;G2
0 1 1o, 0 Y 4

(5.5)

o3 a2
i u§,2:|»4;ai,Yq¢l,dl uz

) =
2 4
OL’+ 0

)2,2:4;ai’Y4 :ui

—i Tya 204,v)0) (10, 2
0 0 1 N

x§ = (ai,ai) ; u§ = (1,4}
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where we have used the superscript on the a's because more
than one product involving the same dependent variables exists.
Let yu. represent an arbitrary (but not boundary) point in the
net defined above with index values (p,q,r). We shall use the
centered finite-difference operator to approximate the dif-

ferential operator

99 .
[

= | 7 T T
i

5 (5.6)

an approximation commonly used and adequate to exemplify our
procedure. Using (5.6), the coefficients of (5.5) may be

written in Kronecker delta notation,

a2 1 2 ey
uc,2,1,4,0 o
0: s 1Ty I;Yu l,Yq
1 _ |
2 = o £ - 8
U2’2:2:4:a2’Y4 2AX% [ GZ,Y4+| aerh_lj
0 4 L4 L
(5.7}
2 _
a = 5 L6
u§;2)|:4:ui"Y‘+ 2hx [ U'I)Y'-i+l a’i)Y‘-l-—l:]
2 -
a =6
U§:2;2:4:ai:Y4 ai’YH

Although these fields of coefficients have PQR elements,
we see that most are zero. These values then yield for the

interaction coefficients,

]
I o 204,y)= 5= [6 » (8§ 1 - 8§ )
, an 2AX as, at,yytl v+l
uZ,u? NACIRC T 01y
-85 % _ &6 g -~ £ )] (5.8)
as, ac,yytl Y-l
AT T AL
a field of (PQR)2 quantities, again mostly zero. We shall see

later that the zero elements can be eliminated from actual

calculation. There exists a set of interaction coefficients for
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each element in Table | and for each point (k) in the grid.
Care must be taken at the boundaries, but we assume that
appropriate boundary conditions are specified and that cor-
responding finite-difference operators can be unambiguously
specified.

The interaction coefficients (5.8) can be listed in
matrix form by the procedure outlined in Section 4, which
needs no further elaboration. The final matrix equation for

this system becomes,

8¢k,Yk

—de & o K 5 (
5T g 6k,3 +: K{Ixi,ui(k,‘yk)}x*‘ X{I)\z,uz k,Yk)}x

(5.9)

where the matrices I are derived from application of the

ALyl
17

operators F of Table | and the matrices 1

u1,|,|,k

0
arise from the application of the operators Fuz 2 1 Kk
yey ity

contain elements of the ftype described by (5.8).

6. Example 2: Spectral method

For an example involving the spectral approach we shall
use a somewhat simpler physical model--applying more approxi-
mations~-than the one used in the previous section, but which
nevertheless incorporates coupling of terms involving the
time operators so that the results of Section 3 may be utilized.
The model is generally referred to as a "General Circulation
Model" and is very similar to one described by Phillips (1956).

The flow field in this model is described by ifs rota-
tional part (the vorticity) by use of the quasi-geostrophic
and quasi-hydrostatic approximations. The dependent variables
are described in pressure coordinates with spherical surfaces

respresenting constant pressure surfaces having coordinates
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A (longitude) and u (sin of latitude). (Note: The
coordinate notation (A,u)is used here to conform To con-
vention. These variables have no relation to the indices

used elsewhere in this paper, and since all operations are
defined, no confusion should ensue.) The vertical velocity
(in pressure) is specified at the top and bottom of the atmos-

phere. Friction is incorporated at the surface proportional to
the vorticity and non-adiabatic heating is included proportional

to the mean temperature of the atmosphere.* To simplify
further, the pressure dependence is approximated by evalua-
ting the dependent variables at two levels only (finite-
difference approximation in the vertical in which fthe pressure
interval is one-half the pressure depth of the atmosphere),
and the dependent variables used are the stream functions at
these two levels, derivable from the geostrophic vorticity.

The equations for this system are **

5 = oy 9(V2y,+h2y,,¥;)
—a—_—l_- [_Vzlpl—hz(l,bl—lj)s):l = —23>\1 + 3](.)\,].1)3 L - K]_(l!)g—QJl)

2 2
Bws . 3(V1¢3+h wl,wg)
A (A, u)

-2

§¥ [V2yg+h2(yy-v3) ] + Ki(¥z=-¥1)

+ Ko (v2y,-3v2y3) . (6.1)

The parameters ¢; , ¥3 (the dependent variables) are the
stream functions at the two levels and are functions of (%,
A,u). The quantities h2 , Ky , Ko are constants and depend
on the character of friction, heating and static stability
(also assumed constant). The Laplacian operator is taken in

a spherical surface.

¥The model differs from that of Phillips (1956) on this
point.
¥*¥This model in spectral form is currently being investi-

gated for ifts predictive characteristics with support from
the National Science Foundation, Grant GA-761.
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We now represent system (6.1) in fthe notation of (l.1).
Since there are only two dependent variables, N = 2 and
(@1,@2) = (¢1,¢3) ° (6.2)

For the time-space operators defined by (2.1),

T, g1 = T, g, = T
Gk,j,i = Gk,j,l = Gk,J (6.3)
I =1
The operators Gk,j are listed in Table 2. From (6.1) we
see that M = 2 ; the operators F m are listed in

uo,m,i,k
Table 3. With these definitions, (6.1) may be expressed
as (l.1).
The dependent variables éj are now expanded in terms
of orthogonal polynomials in (X,u) where we use surface

spherical harmonics (see Hobson, [955),

Paj(y,u) = Yaj(k,u) = exp (Ilajk)PaJ(u) (6.4)

with the properties

v2y = -C2 Y
. &
J b
2y =gy (6.5)
N . e Ta :
J J

where Cé and za are constants. Thus we have established
J J
the set of time-dependent variables ¢l and ¢2
,al ’0'2
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Table 2
Operators Gk ] for Spectral Model
J | 2
k
| V2_h2 h2
2 2 v2-h2
Table 3
Operators F_m : for Spectral Model
UO;mylik
Ful,l,l,k (m=1, i=1)
0
S;\k | 2
| Ki=23/93A KyV2-Kq
2 -K3 Ky-23/3x - 3K,pv?
Fu%,Z,i,k (m=2, i=1,2)
k= 2
u% i=1 i=2 i=] =2
v23/3x 3/9u
L {g2azm, b a/an v
9/9u h23/93x h23/3x 5/9u
Lhg) t -3/03X {hza/au {-hza/au {a/ax
V23/9x 3/3u
0
(2,2) g v23/3u  ‘a/ax
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It is not necessary to specify numerically the series limit,
and we shall therefore keep the range as | < aj < nJ ; we
then have L = n; + np . Using (6.4), (6.5) and Table 2,

we may represent the for this model from

a, . :
k,J,GJ,Yk»I
equation (2.10); this yields as an example for k=I|, j=1,

a G (Y JYY* gr8
I)I’al,Yl d l:' 01 Y1 g

[ (=C2 -h2)Y Y* dadu (6.6)
a1l 01 Y1

-(C% +h2)s
a1 a1,Y1

For the terms involving the F operators (Table 3), using
(2.12), (6.4) and (6.5), we have as an example with u% =
(1,2),22 = (af,e3) ,

*
/ Fuz,z’l’l(él)Fui’z,z,I(@z)Yyldldu

0
20 90 9d 0d
S [h 5 X h % 3n ]YYldAdu
(6.7)
= z ¢ 1 @ 2 I, o0l,yy)
| ,0 2,0 A
lé ’7 ) 0’Yo
aYa% aYag
= 1h2 _ *
1X§'u§<l,yl) ih f[zazYai T zaiYai T ]YYldAdu ]

All the applicable terms may be calculated as the above examples

and need not be listed here in detail. The functions Bk 7
¥k

(Eq. 3.1) are known from evaluation of the type (6.7).

The terms involving variation in time may be uncoupled
following the procedures outlined in Section 3. In this example
it is not necessary to establish the method of time truncation
to perform the uncoupling. Following Section 3 and suppressing

the index | since 1I=1 ,



‘{¢ 1}
X = l’al . (6.8)
{¢2,a2}
From (6.3),
I, 0
T = 9 : = 2
Tk,j = 37 Ij 3 Tk 5T . L (6.9)

From (3.5) and (6.6),

I e oo Y1 °c oo n]. n1+] oo o n1+Y1 oo e n1+n2
~o
A - [O e o o —-C2 —h2 e o o O | O o o o h2 o 0o @ O]
I:Yl Y1
(6.10)
etc. Using (6.9) and (6.10),
~ 8 ~
T = A T, = — A
Ky k,y, Kk ot k,y
T i i (6.11)
=2 A A = {A
Noting the values of the vectors Ak ” as described by the

k
example (6.10), we may spell out the matrix A as follows

assuming np>ny ,

A =
ni N2
- e N ~ - e -~
_Ci_hZ 0 o e o () | h2 0 e« o ¢« O s+ o 0
0 -Ci-hz---o | 0 hZ <« ¢ 0 - o0
e e e oo e e e e e e e IOOI.ll..I.Q'
e oo o e o o © © o o o |ll0...‘..0.'
0 0 ¢ e« -C2-h2 | 0 0 e o o hZ2 . . Q
ni

e e
h2 0 w8 ¥ @ 0 : _Ci_hZ 0 o o o 0
0 h2 o o o s 0 0 =02 K2 n o w 0

| 2

l
0 0 o o e e h2 | S
e o e 9 e oo o o o o o I...OC..O.'..
0 0 o o o o 0 0 « « « 0 P T o

| N2

(6.11a)

Pnl

?nz

/
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At this point we deviate from the development of Section 3

because we may write immediately,

oX _
A el B (6| 2)
where
B = {B } (6.13)

the latter vector elements having been evaluated in the dis-
cussion above up fo and including (6.7). Now assuming that

A  has an inverse* with elements the time dif-

V.
Jooga kv
ferential equation for each dependent variable may be written,

2
I

)
— ¢ = v B (6.14)
3t k,yk o

J J’dj’k’Yk b 2%

l J

J
the uncoupled equation comparable to (3.12). The complete
expression for (l.1) in matrix form for this example (6.1)
can now be written as

3¢k,Yk

—eerd = K{IIy(k,y, ) }x + i{IIz(k,yk)}x (6.15)

where the matrices 1II are defined by (4.30) using the elements
v from the inverse of A (6.lla) and the matrices 1 from

the elements of Table 2 developed as in (6.7). Any truncation
scheme may now be used to solve (6.15) in time, provided fhe

initial conditions are properly specified.

4 Calculation procedure

We have seen how it is possible to reduce a general,
nonlinear differential equation (I.1) to the form (3.12) for

numerical calculation. We furthermore note that all the

¥|f a degeneracy were to exist in the system, it could
be removed by reducing the number of dependent variables.



36

quantities on the right-hand side of (3.12) are known aft

any time t = pAt . Since there are L (Eq. 2.3) dependent
variables, there are L equations of the type (3.12) which
must be solved at each time step. The linear terms offer no
computational complexities since the coefficient fields

u . . are known for all time. Therefore we may
p;J’OLJ-:k:Yk;|

concentrate our attention on the calculation of the nonlinear
terms.

The nonlinear terms may be represented--regardliess of

the order of nonlinearity--by a bilinear form (quadratic in
the case of even products) as seen from (4.30). If we
represent an arbitrary bilinear form as
NL2 = D£,IH2D2,2 (7.1)
where | < & < 2M , we see that vectors D and D and
-7 = 2, | 2,2

the matrices H% are defined for odd and even products from
(4.30) in Table 4.

Table 4

Vectors and Matrices of the
Bilinear Form (7.1) in Terms of (4.30)

0dd Even
_f'\/ ~
Dl,l Um—lK Um
DQ,Z Um—IUI Um
Hy Tom-1 Hom
The vectors D2 | and Dz 5, May be calculated from the values

of the vector i(pAT)--known quantities--by usual matrix multi-
plication procedures as implied by (4.2), (4.3) and (4.4).
Since all the products are of the form (7.1), we may delete the
2 subscript and describe the calculation of any one of the

bilinear forms, NL2 . We note, however, that for each
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equation of the type (3.12)--and there are L of them--
there may exist a bilinear product of the form (7.1); thus
we refer fo the product for a given equation as NL, (l1<k<l),
remembering that the degree of nonlinearity of this term is

implied (the subscript & having been suppressed).

With elements of DI g D2 , and Hk known,
D, = Edli] D, = {d2j} Hk = {hi,j,k} ’

we may establish the ordered set

a_ = (i,j,k,h) ‘ (7.2)

r r

From this set we may establish the bilinear product for the
kdl-h equation by multiplying the i+h element of DI by the
jTh element of D2 by the interaction coefficient h,

545K
We now establish the set (not necessarily ordered) of all

subsets CI

A = {ar} . (7.3)

This set includes all the information necessary to determine

the nonlinear products for a given computation time pAT , and
contains L2* elements a. - We have already seen, especially
for the finite-difference method, that many--if not most-- of
tThe H; i,k vanish. We therefore extract from A the subset

of alllélemenfs for which hi,j,k does not vanish and define
this subset A' . The information contained in this set (A')
may now be used to compute the nonlinear products at any time
that the elements of DI and D2 are known and thus extend
the calculation to any desired time according to (3.12)%,
Certain computational efficiencies may be effected as

follows:

¥The method described above is exftremely well suited to
application on digital computers and has been programmed for
the model used in Section 6.
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I) We note that for a given order of nonlinearity, say

2y , tThe vectors DI and D2 do not depend on the index k ;

however, the interaction matrix elements do. Thus we should

order the set A' such that all values of k are incorpor-
ated before i and j are changed. We might have,
a, = (i, 01, ke,hy)
ar+| = (il,jl,k1+|,h2)r+l
ar+n = (Il,Jl,k1+n,hn+|)r+n
ar‘1+n+| - (IZ’JZ’kl’hn+2)r+n+l
etc.
We need now compute the product D, . D, . only once and
in "2,01

multiply it by the n+l| values of h , cumulating fthe results
in the partial sums which will make up the new values of the
dependent variables @k at 1t = (p+1)AT .

2) |f the dependent variables (x) which make up the
vectors DI and 02 are complex, and certain relaftionships
exist between the real and imaginary parts*, the setf A' may
be further ordered on i and j *o avoid redundant
multiplication.

3) For even products of the nonlinear terms, we see from
(4.27) that the bilinear form is a quadratic form. Since the
interaction matrices are symmetric, it is only necessary to
compute one-half of the matrix product, say above the principal

diagonal, and double the values.

¥Such conditions might exist so that variables describing
physical quantities are real.
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Many variations of ordering of the subsets a. may be
made depending on individual requirements. As an example,
if storage of elements creates difficulties, the subseft ar
may be expanded to include the number of variations of Kk which
exist for given i and j . Thus i, J , and Kk need be
enumerated only once for this set of I with considerable
saving in storage. The possibilities for ordering are many
and need not be detailed; they will become apparent when a

computation is prepared.

8. Conclusion

It has been shown that a general class of nonlinear
partial differential equations in time and space can be
represented in a form which may be easily programmed for
computation on a digital computer. To prepare any set of
equations for computation, a truncation scheme must be
selected to represent the dependent variables as a discrete
set of numbers; continuous solutions are generally not
available. The computational form described is applicable
for both the "spectral" and "finite-difference" truncation
schemes, two methods most frequently used to reduce the con-
tinuous variables to a finite set. The truncation methods
have been applied to the space-dependent aspects of the
variables only. No specific truncation procedure has been
applied to the time dependence of the system aithough how
such ftruncation might be achieved has been indicated.

In the final computational form, all nonlinear terms
are expressed as bilinear forms, the matrices of which are
independent of time; i.e., they are not functions of the
dependent variables. The vectors of the bilinear form depend
only on the dependent variables of the system and are easily
calculated at any time that the variables are known. The
entfire form, it is shown, is readily programmable for compu-

tation on a digital computer. The system may furthermore
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be reduced fo minimum calculation by deleting all zero multi-
plications, thereby making it practicable for the finite-
difference method.

Considerable flexibility in the selection of a time
truncation scheme is available for the final computational
form. Since the space truncation has been represented in the
interaction matrices, no confusion between space and tTime
truncation need be encountered. There will undoubtedly be a
relationship between these two truncation procedures for
computation stability, but this relationship may be investi-
gated directly from the characteristics of the interaction
matrices. Furthermore, from the properties of these matrices,
some estimates of truncation errors may be established; these
errors will be based on truncation procedures which lead to
stable computations.

As mentioned earlier, it is not the purpose of this
paper to evaluate the relative merits of the finite-difference
or spectral methods. Since they can both be represented
formally in an identical way, however, it may be possible to
use this representation to investigate the differences and
similarities of these methods.

Finally, from a practical point of view, the compu-
tational form of the general differential equation (1.1) can
be programmed for digital computation--at least the nonlinear
terms which involve only space truncation--once and for all.
Thus each investigator need not prepare a new program for
calculation. He need merely specify his time truncation
scheme, the order of his vector x , necessary initial con-
ditions, the order of nonlinearity (M), and the interaction
matrices T in ferms of the non-frivial sets A'm
Although such a general program has not yet been prepared,
the technique has been used satisfactorily for the model
discussed in Section 6 and for simple models such as the

Barotropic Vorticity Equation.



4]

REFERENCES

Baer, F., 1961: The extended numerical integration of a
single barotropic model. J. Meteor., 18, 319-339.

, 1964: Integration with the spectral vorticity
equation. J. Atmos. Sci., 21, 260-276.
Bryan, K., 1959: A numerical investigation of certain
features of the general circulation. Tellus, 11,
163-174.

Charney, J. G., R. Fjértoft, J. von Newman, 1950: Numerical
integrations of the barotropic vorticity equetion.
Tellus, 2, 237-254.

Ellsaesser, Hugh W., 1966: Evaluation of spectral versus
grid methods of hemispheric numerical weather prediction.
JJ Appl. Meteor., 5, 246-262,

Hobson, E. W., 1955: The Theory of Spherical and Ellip-
soidal Harmonics. New York, Chelsea Publishing Co.,

500 pp.

Leith, C., 1965: Numerical simulation of the earth's
atmosphere. Methods of Computational Physics,
Academic Press, [1-28,

Mintz, Y., 1965: Very long term global integration of the
primitive equations of atmospheric motion. W.M.O.
Technical Note No. 66, |41-167.

Phillips, N. A., 1956: The general circulation of the
atmosphere: a numerical experiment. Quart. J. R.
Meteor. Soc., 82, 123-164.

Richardson, L. F., 1922: Weather Prediction by Numerical
Process. Cambridge University Press, London, 236 pp.

Richtmyer, R. D., 1957: Difference Methods for Initial

Value Problems. Intferscience Publishers, New York,
238 pp.«
Silberman, 1., 1954: Planetary waves in the atmosphere.

JJ Meteor., 11, 27-34.

Smagorinsky, J., S. Manabe, J. L. Holloway, Jr., 1965:
Numerical results from a nine-level general circu-
lation model of the atmosphere. Mon. Wea. Rev., 93,
727-768. T







